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ABSTRACT  

In recent years, there has been growing interest in online education, including e-learning, 

Massive Open Online Courses (MOOCs), Intelligent Tutoring System (ITS) and university-

level distance learning. These online environments generate vast amounts of data, such as 

activity logs, course interaction data and assessment results, making learning analytics essential 

to predicting student performance. This study examines the efficacy of the probability-based 

model, Bayesian Networks (BNs), in predicting academic performance using learning analytics 

data collected through the Learning Management Systems (LMS). It focuses on how BN is 

capable of predicting student performance in an online learning environment by modeling 

complex relationships among various learning analytics factors that contribute to academic 

success. Using LMS data from Universiti Sains Malaysia's distance learning Mathematics 

course, the study incorporates key learning analytics variables such as engagement metrics, 

resource utilization, self-directed learning activities and assessment, and academic performance 
to develop a BN-based predictive model. BN model revealed that low engagement significantly 

hinders academic success, demonstrating its potential for early intervention and educational 

improvement. The model performance was measured using classification metrics such as 

accuracy, precision, recall, and F1-score. The developed model shows overall good 

performance, marked by strong precision and balanced recall in predicting the target classes 

with some variability. The results revealed that BN effectively captured dependencies among 

key learning analytics variables, providing actionable insights for designing personalized 

interventions in online education.  

Keywords: Bayesian network; learning analytics; student performance; online learning; 

predictive modelling; Mathematics education 

  

ABSTRAK  

Kebelakangan ini menyaksikan peningkatan minat dalam pendidikan dalam talian, termasuk e-

pembelajaran, Kursus Dalam Talian Terbuka Besar-besaran (MOOCs), Sistem Tutor Pintar 

(ITS), dan pembelajaran jarak jauh peringkat universiti. Persekitaran dalam talian ini 

menghasilkan sejumlah besar data, seperti log aktiviti, data interaksi kursus, dan hasil penilaian 

menjadikan analitik pembelajaran penting untuk meramalkan prestasi pelajar. Kajian ini 

mengkaji keberkesanan model berasaskan kebarangkalian, Rangkaian Bayesian (BN), dalam 

meramalkan prestasi akademik menggunakan data analitik pembelajaran yang dikumpulkan 

melalui Sistem Pengurusan Pembelajaran (LMS). Ia memberi tumpuan kepada bagaimana BN 

mampu meramalkan prestasi pelajar dalam persekitaran pembelajaran dalam talian dengan 

memodelkan hubungan kompleks antara pelbagai faktor analitik pembelajaran yang 

menyumbang kepada kejayaan akademik. Menggunakan data LMS kursus Matematik 

pembelajaran jarak jauh Universiti Sains Malaysia, kajian ini menggabungkan pemboleh ubah 

analitik pembelajaran seperti metrik penglibatan, penggunaan sumber, aktiviti pembelajaran 

kendiri dan penilaian, serta prestasi akademik untuk membangunkan model ramalan berasaskan 

BN. Model BN menunjukkan bahawa kurangnya penglibatan secara signifikan menghalang 

kejayaan akademik, menggambarkan potensi untuk intervensi awal dan peningkatan 
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pendidikan. Prestasi model diukur menggunakan metrik klasifikasi seperti ketepatan, 

kepersisan, ingatan semula, dan skor-F1. Model yang dibangunkan ini memaparkan prestasi 

keseluruhan yang baik dalam meramalkan kelas sasaran, melalui nilai kepersisan yang tinggi 

dan ingatan semula yang seimbang, di samping terdapat sedikit kebolehubahan. Dapatan kajian 

menunjukkan bahawa BN berjaya menggambarkan kebergantungan antara pemboleh ubah 

utama analitik pembelajaran, sekaligus memberikan pemahaman yang boleh diambil untuk 

merekabentuk intervensi peribadi dalam pendidikan dalam talian. 

Kata kunci: rangkaian Bayesian; analitik pembelajaran; prestasi pelajar; pembelajaran dalam 

talian; pemodelan ramalan, pendidikan Matematik 

                       

1. Introduction  

E-learning systems in higher education have transformed conventional pedagogical approaches 

by using advanced online technology to provide remote access to educational content and 

foster interactive and personalized learning experiences. Some of the key components of these 

systems include Learning Management Systems (LMS) such as Modular Object-Oriented 

Dynamic Learning Environment (Moodle), Virtual Learning Environment (VLE), Massive 

Open Online Courses (MOOCs) and adaptive learning technologies that customize learning 

instruction to meet individual student needs. These systems bring numerous benefits such as 

enhanced accessibility and convenience (Pihlajamaa et al. 2016; Alshahrani 2023), cost-

effectiveness (Pakdaman et al. 2019), personalized learning trajectories (Jose et al. 2024), 

improved communication (Pihlajamaa et al. 2016), and increased engagement through use of 

multimedia resources and gamification (Kato Nabirye 2025). The effectiveness of e-learning 

content delivery is enriched by its use of a wide array of media, including text, audio, images, 

animation and streaming videos. With rapid technology and the advancement of learning 

systems, devices like smartphones and tablets have gained significant importance in 

classrooms, facilitating mobile learning (M-learning) that offers learning flexibility on the go 

(Lazaro & Duart 2023).  

The rise of e-learning systems in higher education has paved the way for the contribution of 

learning analytics, which play a crucial role in transforming every aspect of the learning 

process. According to Siemens and Long (2011), learning analytics involves the systematic 

collection, analysis, and interpretation of student data from these digital learning environments 

to identify patterns, predict outcomes, and enhance personalized learning experiences. This 

process includes pulling a wide range of data sources, from LMS to online assessments to logs 

of student interaction — anything and everything that provides a detailed and comprehensive 

view of how students learn. Learning analytics assists educators and education providers by 

offering actionable insights into course effectiveness, which helps continuous improvements in 

curriculum design and teaching strategies (Wong et al. 2025). For instance, by analyzing 

student engagement metric like how long student spend with learning materials or their 

participation in online discussions, educators can identify where students might be having 

difficulties and modify their teaching approaches accordingly (Baker & Inventado 2014). 

Furthermore, learning analytics also plays a vital role in informing institutional capacity in 

decision-making by providing data-driven insights into student success and resource allocation 

(Daniel 2015). By analyzing this data, institutions can uncover important trends and patterns 

that guide strategic planning and shape educational policies. 

Previous research focused on modeling, measuring and predicting student performance 

using learning analytics have explored a variety of predictive models, particularly machine 
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learning (ML) techniques used to enhance educational results. Studies have shown that 

predictive models can estimate students’ success using state-based and event-driven data, such 

as demographics, past performance and engagement with online learning environments 

(Almalawi et al. 2024). These models can also identify students who are at risk of facing 

challenges early on, allowing for timely interventions and personalized support (Romero & 

Ventura 2007).  Despite these advances, significant challenges remain particularly in achieving 

truly personalized evaluation. The realization of personalization is hindered by data quality, 

algorithmic bias, and the need for models that can adapt to diverse and evolving learner profiles 

(Almalawi et al. 2024). Traditional predictive methods lack transparency, making it difficult 

for educators to understand or trust predictions (Bird 2021). To address these limitations, 

leveraging Artificial Intelligence (AI) and learning analytics can improve prediction accuracy 

by incorporating dynamic learning behavior and real-time assessments, allowing institutions to 

monitor student progress, identify learners at risk and provide timely interventions to improve 

academic success (Siemens & Baker 2012; Ouyang et al. 2023).  

One such AI-probabilitistic approach, Bayesian Networks (BNs), has emerged as a 

promising approach in this field for their ability to handle uncertainties in student learning 

trajectories and improve the adaptability of personalized feedback mechanisms. BNs work by 

representing knowledge as a network of probabilistic relationships, offering a strong framework 

to model the complex interactions between various educational factors, such as student 

performance, learning resources, teaching strategies and academic results (Chen et al. 2024; 

Looi et al. 2023). Unlike traditional predictive models which often struggle with uncertainty 

and interconnected nature of variables, BNs manage these complexities effectively, making 

them particularly well-suited for educational assessment (Conati et al. 2002; Culbertson 2016). 

This is particularly important in education, where elements like student motivation, prior 

knowledge, and the learning environment interact in complex and sometimes unpredictable 

ways. This strength makes BNs highly valuable for evaluating the impact of adaptive learning 

interventions. Research has shown that BNs can accurately predict student progress, model 

learning processes to estimate different learning states, and ultimately provide targeted support 

and early intervention for at-risk students (Kondo & Hatanaka 2018; 2019). 

Another major strength of BNs is their ability to integrate prior expert knowledge with 

observed data. This makes them highly effective for a range of learning tasks such as predicting 

student performance, grouping similar learning behaviors, and spotting unusual patterns 

(Heckerman 1997; Wang & Han 2016; Kitson et al. 2023). By combining domain expertise 

with real-world evidence, these models achieve greater accuracy and are easier to interpret. 

This feature is especially important in education, where expert insights help ensure that the 

relationships modeled truly reflect real-world causes and support meaningful decision-making 

for personalized learning and early intervention systems (Looi et al. 2023; Chen et al. 2024). 

In addition, a key advantage of BNs lies in their inference process, which significantly 

support causal inference and prediction by enabling the learning and representation of complex 

cause-and-effect relationships in data. This inference mechanism allows beliefs to be 

dynamically updated as new evidence comes in, making BNs a perfect fit for adaptive learning 

environments that rely on continuous feedback and personalization (Wang & Han 2016). This 

capability allows educators and researchers to move beyond simple correlations to rigorously 

investigate how specific educational practices directly impact student achievement (Chen et al. 

2024). This also includes simulating how different teaching strategies might play out, helping 

to predict possible outcomes, supporting better decision-making and tailored intervention 

planning (Delen et al. 2020; Jiang et al. 2023).  
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BNs have been increasingly applied in STEM education at the higher education level, 

especially for mathematics online learning, to model student learning, personalize teaching and 

improve educational outcomes. Foundational studies such as those by Millán et al. (2010; 

2013), Seffrin et al. (2016), Käser et al. (2017) and Fan et al. (2021) demonstrate how BN 

models can assess student knowledge, identify misconceptions, support adaptive learning and 

course recommendation systems in online environments. However, most of this research focus 

on translating mathematics knowledge into learning pathways that cater to individual needs but 

do not fully incorporate learning analytics data, which is critical for addressing the diverse and 

dynamic needs of learners. Furthermore, much of the existing BN research concentrates on 

single data modalities such as log files, clickstream data, or grades, with limited exploration of 

combining diverse data sources, including video, textual or sensor information. These 

multimodal data sources are crutial for capturing the full complexity of learner behaviors (Liu 

et al. 2022; Zheng 2025). There is also a notable gap in domain-specific BN models tailored 

specifically for online mathematics education, which poses unique challenges such as 

developing problem-solving skills and assessing mastery in a step-by-step manner.  

Therefore, the objective of this paper is to develop a BN model that leverages learning 

analytics data to achieve a more comprehensive understanding and prediction of student 

performance, particularly within the context of online mathematics in higher education. This 

model aims to effectively capture uncertainties and causal relationships in student learning 

behaviors, thereby providing more accurate assessments of factors influencing academic 

success and supporting personalized interventions. 

2. Related Work 

This section explores existing research on predicting student performance in online learning 

using learning analytics, focusing on the context of data-driven education and predictive 

modeling. The foundations for understanding BNs will then be introduced, as they serve as the 

core methodological approach for the research presented in this paper. Finally, the application 

of BNs in online mathematics within higher education is presented. 

2.1.  Learning analytics 

Learning analytics has emerged as a vital area in online education, focused on extracting 

meaningful insights about teaching and learning from data. The origins of learning analytics 

can be traced back to the early 2000s, with its foundation built upon educational data mining 

(EDM) and academic analytics (Siemens 2013). While it initially concentrated on helping 

institutions make decision, the rapid growth of digital learning platforms has expanded 

boundaries of learning analytics far beyond that, reaching areas like student engagement, 

personalized learning, and predicting student performance. At its core, learning analytics 

involves collecting, analyzing and interpreting data related to students, all with the goal of 

maximizing learning outcomes and improving educational practices. More recent research 

points to its growing role in adaptive learning systems, wherein AI-based models personalize 

instructional content based on individual student’s performance (Ouyang et al. 2023).  

Learning analytics leverages various key variables to assess, predict and improve student 

performance in higher education. These include academic achievements, behavioral data, levels 

of engagement, demographic and psychographic characteristics, institutional influences and 

preferred learning methods. Some specific types of data involved are (Baker & Inventado 

2014): 
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• Academic test scores  

• Class grades/level 

• Demographic and psychographic data 

• Data of learning styles, characteristics or preferences 
• LMS/ Content Management System (CMS) activity data 

• Survey data 

 

Academic performance such as grades, exam scores, coursework completion and 

assessment-related data remains as crutial factor in learning analytics. Research has shown that 

predictive models based on these academic measures are effective at identifying students who 

may be at risk, enabling early interventions that can improve outcomes. For example, Qiu et al. 

(2024) developed a dual-mode grade prediction architecture that enables grade prediction solely 

from past semester grades to identify at-risk students. The architecture uses a dual-mode 

approach that first incorporates a weighted loss function into an LSTM model, followed by a 

short-term Gated LSTM to facilitate early intervention strategies. Similarly, Lyn et al. (2024) 

developed a unified Learning Analytics Framework that uses clustering algorithms combined 

with network analysis to provide actionable insights. This framework aims to offer a 

comprehensive understanding of students’ academic performance and highlight key learning 

pathways. 

LMS log data plays a vital role in the early prediction of academic outcomes by tracking 

important student behaviors. Video-viewing behaviors—such as time spent watching 

instructional videos, repeated viewing, and active interactions like pausing or seeking—

strongly correlate with student comprehension and engagement (Brinton et al. 2016; Lu et al. 

2018). Likewise, early quiz attempts and scores give immediate feedback on how well students 

understand the course material, making it easier to identify those who might be struggling and 

to predict final grades sooner (Lu et al. 2018; Zhao et al. 2023). Homework or assignment 

submissions and their timeliness further serve as strong behavioral indicators linked to 

academic success (Moreno-Marcos et al. 2020). 

These predictive insights are deeply connected to broader patterns of student engagement 

within digital learning platforms. Engagement metrics—such as clicks on course materials, 

frequency of access, time spent on digital coursework, forum participation and navigation 

within the LMS—capture students’ overall interaction with the learning environment (Lu et al. 

2018). For instance, Wang & Yu (2025) utilized a machine learning approach for student 

performance prediction in online learning, focusing on various online behavioral indicators. 

These indicators included course registration and login frequency, resource monitoring time, 

resource utilization efficiency, and engagement metrics such as repeated learning resource 

access and forum browsing/replying. A study by Bellarhmouch et al. (2025) proposed an 

intelligent predictive model designed to classify students based on their participation and 

engagement in the VLE. This algorithm aims to predict whether a learner is engaged or not, 

utilizing input data that includes student information, exam scores, quiz results, and lesson 

activity. Furthermore, more advanced methods like deep learning have been used to analyze 

temporal LMS data, demonstrating high accuracy in predicting course performance based on 

engagement behavior (Chen & Cui 2020). 

These studies underscore the importance of leveraging diverse data sources to gain a 

comprehensive understanding of student learning and inform effective educational 

interventions. By integrating academic performance data with LMS activity and student 

behavioral insights, educators can create a more comprehensive and predictive learning 

analytics model that enables more targeted, timely, and effective educational interventions. 
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2.2.  Predictive modeling in learning analytics 

Predictive modeling plays a crucial role in translating learning analytics data into actionable 

insights. Acording to Ferguson (2012), the learning analytics process encompasses data 

analysis, prediction, and subsequent adaptation or intervention. Within this process, predictive 

modeling has become a key focus, helping educators and institutions better understand learner 

behavior and improve outcomes. These models are generally built using statistical or ML 

techniques to detect patterns in educational data. Many institutions have employed predictive 

modeling as part of their learning analytics efforts to boost student success (Arnold & Pistilli 

2012; Jayaprakash et al. 2014; Sulak & Koklu 2024).  

The application of ML and data mining techniques have gained considerable attention for 

their ability to predict learning outcomes and identify at-risk students. Recent advancements 

have enabled the integration of diverse learning analytic variables into highly accurate 

predictive models. Numerous studies and systematic reviews highlight the use of various ML 

algorithms such as Artificial Neural Networks (ANN), Support Vector Machines (SVM), 

Decision Tree (DT), Random Forests (RF) and ensemble methods (Namoun & Alshanqiti 2021; 

Luan & Tsai 2021; Rizwan et al. 2025).  

Deep learning approaches have also shown strong potential. For example, Kim et al. (2018) 

introduced the GritNet model, which uses sequential event data from MOOCs to make early 

predictions about whether students will complete a course. It performed better than logistic 

regression, especially in the early weeks of a course. Similarly, Lee et al. (2021) developed two 

deep neural networks—one that used video-viewing behaviors to predict learning outcomes, 

and another based on exercise data to predict question accuracy. Both models effectively 

measured student performance using learning behaviors and responses. 

In the context of hybrid learning during the COVID-19 pandemic, Wan et al. (2023) 

developed a powerful deep learning model that combined Bidirectional Long Short-Term 

Memory (LSTM), Global Average Pooling and TIME MASK components. This model excelled 

at making early predictions in hybrid learning environments. Another study by Li et al. (2024) 

created a system using a lightweight Gradient Boosting Machine (LightGBM) optimized with 

a Genetic Algorithm (GA), which led to measurable improvements in students’ online learning 

performance, including grades, midterms and GPA. Recently, Wang and Yu (2025) used 

logistic regression based on eleven behavioral indicators from online learning, showing strong 

links between student engagement such as time spent and initiative, and academic outcomes. 

Several studies have also compared different ML models across educational settings to 

determine which ones work best for predicting student performance. For example, Nespereira 

et al. (2016) analyzed two years of Moodle access logs in a blended learning environment and 

found that RF outperformed SVM in predicting student success, emphasizing the importance 

of time-based interaction data. In a separate study, Ahmed (2024) tested several classifiers 

including SVM, DT, Naive Bayes, and K-Nearest Neighbors (KNN) on e-learning data. After 

tuning, SVM achieved the highest prediction accuracy at 96%, while Naive Bayes lagged due 

to its assumption of independent features. Similarly, Habti et al. (2025) evaluated RF, Logistic 

Regression, SVM and Linear Discriminant Analysis (LDA) using open university data and 

found that RF was the most accurate, achieving 91% accuracy. 

Despite their success, many existing ML models still face challenges, particularly in terms 

of explain ability and the lack of probabilistic reasoning. This limits their ability to provide 

deep, evidence-based insights that are essential for designing effective, personalized learning 

interventions. In contrast, BNs offer a more comprehensive and holistic modeling approach by 

capturing complex causal relationships and accounting for uncertainty in student learning 

processes. This allows for more precise, actionable insights that support personalized 
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interventions, making BNs especially well-suited for educational settings. The following 

section discusses the BN framework in detail. 

 

2.3.  Bayesian Network  

Bayesian Network (BN) fall into the realm of several fields such as graph theory and probability 

(Koller & Friedman 2009). BN is utilized as a probabilistic modeling approach capable of 

providing a flexible representation of relationships among variables while maintaining a high 

level of interpretability (Pearl 1988). BN represents probability distribution by approximating 

a joint probabilistic structure through a Directed Acyclic Graph (DAG), i.e., a directed graph 

with-out cycles. The variables (or nodes in the network) can be in two categories, the parent 

nodes—variables that are causes of a particular node, and child node—the consequence of that 

node. The nodes with no parent nodes are called root nodes. The variables associated with the 

nodes can be discrete—take on a finite number of states, or continuous—an infinite range of 

possible values. The directional arches from parent to child nodes represent causal influences, 

quantified by the conditional probability values, which are represented in a Conditional 

Probability Table (CPT) for discrete variables. Each probability in a CPT represents the 

probability of a certain state in a child node given a single state or a set of states in parent nodes. 

For nodes that have no parents, the CPT will contain the prior probability values for discrete 

variables or marginal distribution for continuous variables. 

Assume that a set of random variables 𝑉 = {𝑋1, 𝑋2, … , 𝑋𝑛} and a DAG U=(V,D) where V is 

the set of variables in the network and D represents the directed edges. Each variable 𝑋𝑖 is 

associated with a conditional probability distribution 𝑃(𝑋𝑖|𝑃𝑎(𝑋𝑖)). The joint probability of all 

variables is given by:  

 

P(X1, X2, … , Xn) = ∏ P(Xi|Pa(Xi))n
i=1  (1)   

         

where  Pa(Xi) represents the parent nodes of  Xi. The marginal probability of variable  Yj is 

obtained by summing over all possible values of other variables:   

 

P(Yj) = ∑ P(X = xi)P(Y = yj|X = xi)X . (2)   

         

The basic principle governing BN is Bayes’ theorem given by;   

 

  P(Xi|Yj) =
P(Xi)P(Yj|Xi)

P(Y)
   (3) 

      

where 𝑃(𝑋𝑖|𝑌𝑦) is the posterior probability, 𝑃(𝑋𝑖) is the prior probability and 𝑃(𝑌𝑗|𝑋𝑖) is 

the likelihood.  

There are three main stages to design and build the BN: variables structuring, quantification 

and inference. The first stage is to identify variables and their dependencies or cause-effect 

relationship. Structure learning is the process of defining the optimal configuration of a BN to 

capture relationships between variables effectively. There are two main approaches to 

constructing a BN structure: expert-driven and algorithmic. In the expert-driven approach, 

domain specialists manually define the network based on their knowledge of causal 

dependencies within the system. This method is particularly useful when data is limited or when 

prior knowledge is essential in guiding the model's structure (Russell & Norvig 2021). The 



 

Nurulhuda Ramli & Mohd Tahir Ismail 

396 

second approach relies on algorithmic methods, where ML techniques infer the network 

structure from data (Murphy 2002). 

Once the structure of a BN is determined, the next step is parameter estimation, which 

involves defining the prior probability (for each state in the parent node) and CPT values (for 

each state in the child node) for each node in the network. Two widely used approaches for 

parameter estimation are based on exact data, utilizing methods such as Maximum Likelihood 

Estimation (MLE) and Bayesian Estimation, or on expert judgment when data is unavailable, 

through a procedure known as expert elicitation (Jensen & Nielsen 2007).  

The third stage is to make an inference on the variables when new information (called 

evidence) of any variables is entered in the network. When evidence is observed in one of the 

variables, it can propagate over the network and the probabilities of all other variables that are 

affected are updated as well. BNs involve two types of inference. The first is causal (or top-

down) inference, in which probabilities in child nodes are computed based on evidence from 

parent nodes. The second is diagnostic (or bottom-up) inference, where evidence is observed in 

child nodes, and the goal is to infer the most likely causes in the parent nodes.  

Various software packages are available for building BN, including Netica, Hugin, 

Analytica, GeNIe, and Bayes Net Toolbox. These tools facilitate the efficient construction, 

analysis, and visualization of BN, making the modeling process more accessible. In this study, 

GeNIe Modeler (BayesFusion 2023) is used to develop the BN model due to its high quality, 

flexible data-generation capabilities, user-friendly graphical interface, and free availability for 

academic users. It was developed by the Decision Systems Laboratory at the University of 

Pittsburgh and is part of the SMILE (Structural Modeling, Inference, and Learning Engine) 

library which allows integration with other applications.  

2.4.  Bayesian Networks in online mathematics higher education  

BNs have increasingly been applied in online mathematics education to model student learning 

to better understand student learning, deliver personalized instruction, and improve outcomes 

in higher education. One of the early foundational studies by Millán et al. (2010) laid important 

groundwork in building Bayesian Student Model (BSM) for procedural mathematics domains, 

specifically modeling the Simplex algorithm used in linear programming. In their work, student 

knowledge was represented as a sequence of interconnected skills necessary for completing 

each step of the algorithm. This approach demonstrated how adaptive tutoring systems can 

tailor instruction to a student's mastery of complex, step-by-step mathematical procedures in an 

online learning setting. 

Building on that foundation, Millán et al. (2013) integrated a Generic Bayesian Student 

Model (GBSM) into the Mathematics Education Project’s computerized testing system to 

diagnose student knowledge of first-degree algebraic equations. Their model was validated with 

152 students who completed both computerized and written exams. Results showed strong 

alignment between BSM diagnoses and expert grading in written tests, but weaker agreement 

for computerized assessments. This study revealed challenges in applying BN diagnostics to 

automated online testing environments. 

Seffrin et al. (2016) advanced BN applications by developing a Dynamic Bayesian Network 

(DBN) for step-based Intelligent Tutoring Systems (ITS) in assessing algebraic knowledge. 

Rather than only analyzing final answers, their model assessed each algebraic operation 

performed during problem-solving to infer understanding of both concepts and skills. Their 

model also relied on explicitly defined prerequisite relationships among knowledge 

components to support fine-grained learning assessments. This allowed for more accurate 

detection of misconceptions and enabled highly personalized feedback.  
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Further expanding BN capabilities, Käser et al. (2017) used DBNs to overcome the 

limitations of traditional Bayesian Knowledge Tracing (BKT). Their model simultaneously 

tracked multiple interconnected skills across various domains, including mathematics. 

Evaluated on large-scale datasets, the DBN approach proved more accurate at predicting 

students’ knowledge states and helped design personalized instructional strategies in intelligent 

online tutoring systems. 

Fan et al. (2021) tackled the challenge of course personalization in online math platforms 

by developing a Bayesian-based recommendation model. This model encoded causal relations 

between knowledge points and used both prior and posterior information to recommend optimal 

course selections. It outperformed traditional collaborative filtering methods, allowing learners 

to independently choose courses aligned with their current progress and personal preferences, 

ultimately supporting greater autonomy in online learning. 

In Malaysia, research applying predictive modeling, particularly BNs to understand 

mathematics learning in higher education is still limited but gradually growing. To date, only 

one prominent study by Ong and Lim (2014) has applied BNs in the context of mathematics 

Malaysian higher education. Their research explored the factors influencing problem-solving 

among pre-university students and found that a poor understanding of mathematical symbols 

significantly reduced students’ confidence and success. Other studies in Malaysia have applied 

different predictive models to mathematics performance but have mostly focused on face-to-

face learning. For example, Lye et al. (2010) applied various ML techniques including Back-

propagation Neural Networks (BPNN), Classification and Regression Trees (CART) and 

Generalized Regression Neural Networks (GRNN) using enrollment and exam performance 

data from pre-university students to predict their mid-semester and final exam scores in 

mathematics. Among these, BPNN achieved the highest prediction accuracy. Similarly, 

Samsudin et al. (2022) utilized SVM regression on undergraduate CGPA data and found that 

the radial basis function kernel produced the most accurate academic performance predictions. 

In addition, Suthar and Tarmizi (2010) applied logistic regression to survey data from 

university undergraduates, showing that students’ beliefs about mathematics and their self-

confidence are important predictors of academic success. Yahaya and Hasan (2021) used 

absorbing Markov chain models on enrollment and academic performance data of 

undergraduate mathematics students to analyze patterns of retention, progression, and 

graduation, demonstrating how probabilistic models can provide clear insights into academic 

trajectories. More broadly, research has highlighted the impact of advanced technologies and 

psychological factors in mathematics education. For instance, Jin et al. (2022) reviewed how 

Industry 4.0 technologies like Big Data and Artificial Intelligence could transform teaching 

practices and decision-making in Malaysian mathematics education. 

Overall, BNs in online mathematics education have proven effective at utilizing detailed, 

step-by-step problem-solving data and capturing the causal relationships between different 

knowledge components. This enables the delivery of personalized feedback and the creation of 

adaptive learning pathways. However, in Malaysia, research applying predictive modelling, 

especially BNs to mathematics learning in higher education is still limited and tends to focus 

mainly on traditional face-to-face settings rather than online or e-learning environments. 

Despite the rapid growth of digital education platforms, Malaysian studies have yet to fully 

explore the use of predictive BN models that integrate comprehensive, real-time learning 

analytics data. This study seeks to address this gap by developing a BN model designed to 

predict student performance in online mathematics courses using rich learning analytics data. 

Such a model aims to provide a deeper and more nuanced understanding of student learning 

behaviors, supporting personalized interventions tailored to the specific needs of online 

learning in Malaysian higher education. 
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3. Bayesian Network Framework for Performance Modelling 

In this section, we present a framework for developing a BN model to analyze student 

performance using learning analytics. Figure 1 illustrates the framework, which integrates 

learning analytics principles with BN modeling.  

    

 

Figure 1: Framework for constructing Bayesian Network for learning analytics 

 

The detailed process can be explained as following steps:  

(1) Select key variables. The first step in building a BN is to identify and select relevant 

learning analytics variables that significantly impact student performance. These variables 

serve as nodes in the network and can be categorized into academic (e.g. GPA, exam scores 

and assignment results) and behavioral data (e.g. log activity, engagement levels, and 

interaction with learning resources). The selection of these variables is based on their 

relevance, availability, and predictive power in determining learning outcomes. 

(2) Normalize and discretize data. This step is data preprocessing, which ensures consistency 

and compatibility with BN modeling. Normalization is used to transform numerical values 

into a standardized range, allowing for better comparability across different data points. 

Discretization converts continuous variables into categorical states which makes the data 

more suitable for Bayesian inference. 

(3) Define network structure. The network structure defines the causal relationships between 

variables, ensuring a logical and interpretable model. This can be done either data-driven 

structure learning or expert-driven structure, or combination of both approaches. The 

structure must also respect chronological order, ensuring dependencies reflect realistic 

learning progressions (e.g., prior coursework influencing final grades). 
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(4) Estimate model parameters. Once the BN structure is established, the next step is to 

estimate its parameters by determining the prior probabilities of parent nodes and the CPTs 

for child nodes. CPTs define the likelihood of a node taking a specific value based on the 

values of its parent nodes which captures the relationships between variables. These 

probabilities can be estimated using methods such as MLE, Bayesian estimation, or expert 

elicitation. 

(5) Train and validate model. To evaluate its performance, the dataset is divided into training 

and test sets, ensuring that the model learns from one portion of the data and is tested on 

another. Cross-validation techniques, such as k-fold validation, are used to assess the 

model’s reliability and consistency. Additionally, the predictions made by the BN are 

compared with traditional ML models to determine its effectiveness. 

(6) Analyze and interpret insights. Once the BN is trained, it provides valuable insights into 

student performance patterns by analyzing causal relationships between student behaviors 

and academic outcomes. The model also enables early identification of at-risk students by 

examining probabilistic dependencies, allowing for timely interventions. Educators and 

administrators can use these insights to identify key factors influencing academic success 

and helping them prioritize strategies that have the most significant impact on student 

outcomes. 

 

Regarding steps (5) and (6), some researchers prefer to first analyze and interpret model 

insights, while others prioritize training and validation. This interchangeability reflects the 

iterative nature of model development, where initial analyses inform subsequent validation and 

refinement. In the following section, we present the process of applying the BN for predictive 

analysis within the proposed framework. 

4. Application of the Proposed Framework 

This section explains how the proposed BN framework is applied to predict student 

performance in solving system of linear equations using Mathematica software. We begin by 

defining the dataset and key learning analytics variables, followed by developing the BN 

including its structure and probability estimation. Finally, we evaluate the model’s accuracy 

and reliability using performance metrics.  

4.1.  Dataset and variables  

In this study, data were collected from students enrolled in the Mathematics Software 

Laboratory course at the School of Distance Education (SDE), Universiti Sains Malaysia 

(USM), during the 2023–2024 academic session. The dataset comprises educational records of 

nine students enrolled in the course during this period. SDE conducts online learning through 

the Moodle LMS, utilizing a blended learning approach. Students are required to attend online 

lectures via the Webex platform, engage in independent learning activities and complete various   

assessments integrated within the Moodle LMS, including multiple-choice quizzes, short-

answer exercises, and problem-solving assignments designed to evaluate their understanding 

of mathematical concepts and software applications. To simplify BN modeling, we focus on 

data from a specific subtopic in the course—solving systems of linear equations using 

Mathematica software.  
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Table 1: The variables used for the construction of the Bayesian Network (BN) model 

Variable (nodes) Description States 

(i) Student engagement   

Course_hits The number of times a student accesses the course 

materials in the LMS. 

Low, Medium, High 

Days_with_access The total number of days a student logs into the 

course platform. 

Low, Medium, High 

Resources_with_access The amount of learning resources a student interacts 

with. 

Low, Medium, High 

Course_Participation Measures a student’s engagement in activities in the 

LMS. 

Low, High 

Attendance_Rate The percentage of scheduled classes or sessions a 

student attends. 

Low, High 

 

(ii) Resource untilization 

  

Familiarity_with_Mathematica Indicates whether a student has prior experience 

using Mathematica 

Yes, No 

Course_Module_Basic_Functio

ns 

Completion of Basic Functions module Complete, Not 

complete 

Course_Module_SLE Completion of System of Linear Equations (SLE) 

module 

Complete, Not 

complete 

Webex_Lecture_Module_Basic

_Functions 

Attending Webex lecture on Basic Functions. Complete, Not 

complete 

Video_Mathematica_for_Begin

ner 

Accessed the introductory Mathematica video Complete, Not 

complete 

Webex_Lecture_Module_SLE Attended the Webex lecture on solving SLE. Complete, Not 

complete 

Video_Matrix_Manipulation Accessed the video on matrix manipulation. Complete, Not 

complete 

 

(iii) Self-Learning and 

assessment 

  

Self_Learning_Basic_Calculati

on 

Engaged in self-learning activities for basic 

calculations. 

Complete, Not 

complete 

Self_Learning_Matrices Engaged in self-learning activities related to matrices. Complete, Not 

complete 

Gamification_Quiz_Basic_Calc

ulation 

Participation in gamified quizzes on basic 

calculations. 

Complete, Not 

complete 

Assessment_Solving_SLE Completion of the assessment on solving SLE. Complete, Not 

complete 

 

(iv) Performance 

  

Mathematica_Laboratory_Exer

cise 

Participation in lab exercises using Mathematica. Low, Medium, High 

Examination_Grade The final exam score categorized into different 

performance levels. 

Medium, High 

Solving_SLE Achievement in solving the system of linear 

equations. 

Low, Medium, High 

 

The BN model captures the relationships among 19 learning analytics variables grouped into 

several key domains. The BN model captures the relationships among 19 learning analytics 

variables grouped into several key domains. These include measures of student engagement 

(e.g., frequency of course access, participation levels and attendance rates); resource utilization 

variables, reflecting students’ interactions with various instructional materials (e.g., online 

lectures, course modules and tutorial videos); self-directed learning activities and assessment 

variables (e.g., use of open resources and online gamification); and academic performance 

indicators (e.g., laboratory exercises, examinations and problem-solving tasks) to 
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comprehensively evaluate learning outcomes within the topic. The variables used for the 

construction of BN model are listed in Table 1. Some variables are discretized into categories 

to represent distinct states in the BN. For example, “Course_hits”, “Days_with_access” and 

“Resources_with_access” are discretized into three categories Low, Medium, and High to better 

represent engagement levels. Meanwhile, “Familiarity_with_Mathematica” is categorized as 

Yes or No to indicate whether a student has prior experience using the software. The variables 

“Course_Module_Basic_Functions” and “Course_Module_SLE” are defined by completion 

status, classified as either Complete or Not Complete. 

4.2. BN modelling of student performance 

The process of fitting a BN is called ‘learning’. In this process we are looking for an optimal 

configuration for our model that fully describes the relationship between the variables (the 

dependency structure of the variables). An optimal configuration must be well-suited for its 

corresponding application. With this regard, there are two approaches for designing the 

configurations for BN, leveraging expert domain-knowledge and utilizing mathematical 

algorithms. Given the limitations of available data and the need to include pedagogical 

knowledge, we utilized expert elicitation to define the network structure. Specifically, 

pedagogical experts were consulted to identify and define the relationships among key variables 

of student engagement, resource utilization, self-directed learning activities and assessment, 

and academic performance. Although expert-driven network construction can introduce 

potential biases, preliminary experiments demonstrated the potential for strong predictive 

performance.  

In this study, the network structure was developed through elicitation with a domain 

expert—a mathematics lecturer who is well-versed in the subject matter relevant to the model. 

The elicitation was conducted through a structured verbal interview one-on-one format allowed 

for in-depth exploration of the expert’s knowledge and reasoning, enabling for clarify any 

ambiguities and probe specific relationships among variables systematically. The conversation 

was recorded and transcribed, and key elements shaping the network structure were extracted 

by identifying consistent causal links and dependencies mentioned by the expert. This approach 

aligns with practices in similar expert-elicited BN modeling studies, such as the work by Marcot 

et al. (2006), where a single expert or a small group of experts provide detailed knowledge 

through structured interviews, which is then carefully translated into the BN structure. 

The constructed BN of the learning analytics variables and student performance in solving 

system of linear equations using Mathematica software is shown in Figure 2. It represents the 

relationships between various learning analytics metrics and student activities in an online 

mathematics course. The input nodes represent student engagement indicators, including course 

hits, days with access, resource availability, familiarity with Mathematica, attendance rate, and 

course participation. These factors influence student engagement with different learning 

modules, such as Webex lectures, video tutorials, self-learning exercises, and quizzes. These 

resources act as intermediaries, helping students build foundational knowledge before they 

attempt assessments. The final node, Solving System of Linear Equation (SLE) using 

Mathematica software, represents a key competency in the course and is the outcome of a 

sequence of learning interactions. 
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Figure 2: The constructed Bayesian Network (BN) of learning analytics indicator and student performance in 

solving systems of linear equations using Mathematica software 

 

Once the model configuration is determined, the parameters are estimated using the data in 

the training set. Specifically, the Expectation-Maximization (EM) algorithm was employed to 

learn the parameters, iteratively updating the CPTs tables based on observed data. The EM 

algorithm using the fundamental probabilistic principles of BN using Eq. (1) and Eq. (2) to 

refine CPTs through alternating expectation and maximization steps. This approach was 

particularly suitable for handling potential missing data within our dataset, a common challenge 

in educational learning analytics. The BN modeled in GeNIe Modeler (see Figure 3) visually 

represents the network structure and the learned probabilities. 

Figure 3: Bayesian Network (BN) utilizing Expectation-Maximization (EM) for parameter learning 
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This BN model in Figure 3 indicates a causal chain of factors culminating in varying levels 

of proficiency in "Solving SLE using Mathematica Software." High "Attendance Rate" (89%) 

and "Familiarity with Mathematica" (78% Yes) provide a strong foundation, leading to 

substantial engagement with initial modules like "Webex Lecture Module Basic Functions" 

(82% Complete) and "Course Module Basic Functions" (54% Complete). However, a 

significant decline in completion rates for "Video Mathematica for Beginner" (33% Complete) 

and "Gamification/Quiz Basic Calculation" (37% Complete) suggests an early struggle with 

applying basic concepts. This challenge persists in advanced activities like "Video Matrix 

Manipulation" (29% Complete) and "Assessment Solving SLE" (32% Complete), indicating a 

growing difficulty in translating theoretical knowledge into practical application. Despite a 

considerable portion of students achieving "Medium" examination grades (49%), this does not 

translate into high proficiency in the practical application of solving SLE using Mathematica, 

where only 46% achieve a "High" score. The network reveals that high engagement at each 

stage significantly increases the likelihood of success in the subsequent learning activities, 

culminating in a higher probability of achieving high proficiency in solving SLE using 

Mathematica, though a significant portion of students still demonstrate low proficiency (21%), 

indicating potential gaps in the learning process despite strong foundational elements. 

One of the most powerful capabilities of BN is their ability to perform inference.  As 

illustrated in Step (6) (see Figure 1), interpreting insights provides valuable understanding of 

performance patterns, including the early identification of at-risk students through probabilistic 

dependencies. In this study, a diagnostic inference mechanism is employed to identify students 

struggling to master systems of linear equations in Mathematica and to uncover the underlying 

factors contributing to their difficulties. Applying Eq. (3), we observed evidence of 100% of 

students scoring low in solving SLE using Mathematica, resulting in the subsequent update of 

all other node states within the network (see Figure 4). One of the most powerful capabilities 

of Bayesian Networks is their ability to perform inference. Diagnostic inference, in particular, 

allows for the identification of high-risk students struggling with mastering systems of linear 

equations in Mathematica and helps reveal the factors behind their difficulties. 

 

 

Figure 4: Diagnostic inference in Bayesian Network (BN) for identifying key learning challenges 
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This BN model reveals a 100% low score in "Solving SLE using Mathematica Software," 

highlights a significant disconnect between initial engagement and ultimate performance. 

Despite a strong foundation indicated by high "Attendance Rate" (89%) and "Familiarity with 

Mathematica" (78% Yes), students encounter critical challenges in applying their knowledge 

to complex tasks. The initial engagement with "Course Module Basic Functions" (55% 

Complete) and "Webex Lecture Module Basic Functions" (82% Complete) suggests a 

willingness to learn. However, a sharp decline in engagement with "Video Mathematica for 

Beginner" (33% Complete) marks the first major red flag, indicating a potential knowledge gap 

early on. This decline continues with "Video Matrix Manipulation" (29% Complete) and 

"Assessment Solving SLE" (33% Complete), demonstrating a struggle to translate theoretical 

understanding into practical problem-solving. While "Examination Grade" shows a significant 

portion achieving medium grades (64%), this knowledge does not translate into practical 

application, as evidenced by the 100% low score in the culminating task. This network suggests 

that while students are present and possess foundational knowledge, they struggle with 

advanced concepts and practical application, indicating a need for targeted interventions 

focusing on bridging the gap between theory and practice.  

In the next section, the result of applying this model for predicting the student performance 

is presented. 

4.3.  Model evaluation 

BNs are typically evaluated using classification metrics such as accuracy, precision, recall, and 

F1-score to assess their predictive performance (Heckerman 1997; Korb & Nicholson 2008). 

Accuracy measures the overall correctness of predictions, precision quantifies the proportion 

of true positive predictions among all positive predictions, recall (or sensitivity) measures the 

proportion of true positives detected among all actual positives, and F1-score provides a 

harmonic mean balancing precision and recall. Most of these metrics are derived from the 

confusion matrix, which cross-tabulates the counts of correctly and incorrectly predicted 

instances for each class. In a binary classification model, the confusion matrix consists of four 

key components: True Positives (TP), representing the number of correctly predicted positive 

cases; True Negatives (TN), representing the number of correctly predicted negative cases; 

False Positives (FP), representing negative cases incorrectly predicted as positive; and False 

Negatives (FN), representing positive cases incorrectly predicted as negative. Essentially, the 

diagonal cells (from the top-left to the bottom-right) contain the correctly classified instances, 

while all off-diagonal cells represent misclassifications. The following performance metrics are 

used to evaluate the prediction methods:  

 

Accuracy=
TP+TN

TP+TN+FP+FN
     (4) 

 

Precision=
TP

TP+FP
     (5) 

 

Recall=
TP

TP+FN
     (6) 

 

F1-Score=2 ×
Precision×Recall

Precision+Recall
     (7) 
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Table 2: Performance measures of BN model 

Metric Value Mean ± Standard Deviation (SD) 

Accuracy 0.7778  (0.4556 ± 0.366) 

Precision 0.8413   (0.4191 ± 0.3886) 

Recall 0.7778  (0.4556 ± 0.366) 

F1 0.7407 (0.4168 ± 0.3724) 

 

To evaluate the BN model’s performance, we used a 70/30 train-test split where 70% of the 

data was used for training and the remaining 30% was reserved for testing to assess predictive 

accuracy. Table 2 shows the results of the performance BN model. The model achieved an 

accuracy of 0.7778, indicating that approximately 78% of the predictions were correct. 

However, the relatively large standard deviation (±0.366) in accuracy suggests some variability 

across different test samples or folds, implying that the model’s consistency may fluctuate 

depending on the data subset. Precision was notably high at 0.8413, demonstrating that when 

the model predicts a positive outcome, it is correct over 84% of the time. This high precision, 

despite a moderate standard deviation (±0.3886), reflects the model’s strength in minimizing 

false positive predictions. The recall value matched the accuracy at 0.7778, which means the 

model successfully identified about 78% of the actual positive cases, though the standard 

deviation again indicates variability in sensitivity across samples. The F1-score, which balances 

precision and recall, was 0.7407, suggesting a reasonably good overall balance between 

correctly identifying positive cases and limiting false positives. The associated standard 

deviation (±0.3724) underscores some instability in performance but still supports the model’s 

robustness. Overall, these results indicate that the developed BN model performs well in 

predicting the target classes, with strong precision and balanced recall. The observed variability 

highlights the need for further validation and potential model refinement to ensure consistent 

performance across diverse dataset.  

5. Conclusion  

The present study introduced a BN framework utilizing learning analytics indicators to predict 

student performance in online learning. To achieve this, the framework modeled academic 

success through a sequence of six key steps for constructing a BN tailored for this predictive 

task. These steps encompassed: (1) the selection of pertinent academic and behavioral variables; 

(2) the normalization and discretization of the data; (3) the definition of the network structure 

to represent underlying causal relationships; (4) the estimation of the model parameters; (5) the 

training and validation of the model's predictive capabilities; and (6) the analysis and 

interpretation of the resulting insights to elucidate performance patterns and facilitate the 

identification of students at potential academic risk, thereby enabling timely interventions. The 

proposed framework was subsequently applied to student data obtained from individuals 

enrolled in an online Mathematics subject at public universities in Malaysia. The constructed 

BN model revealed critical insights into the dynamics of student learning pattern, notably 

indicating a direct correlation between low student engagement in core learning activities and 

diminished competency in achieving key course outcomes. This observation was further 

confirmed by the model's inference mechanism, which highlighted the significant negative 

impact of low engagement on overall student performance. 

A primary contribution of this work is the distinctive approach in developing BN in online 

education, achieved by integrating learning analytics and mapping the subject's learning path. 

This approach allows for accurate student performance prediction, thereby enabling the early 

detection of at-risk students and the subsequent implementation of targeted interventions. 
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Future research should prioritize the enhancement of model accuracy by incorporating temporal 

factors, such as the timing of prerequisite courses, alongside personal, social, and psychological 

variables. This would provide a more comprehensive understanding of student capacity. 

Ultimately, this study demonstrates the potential of BN powered by learning analytics to 

contribute meaningfully to the improvement of educational practices and student outcomes 

within online learning settings. 

Acknowledgments  

We sincerely appreciate the generous support of R502 - KR - ARU005 - 0000000588 - 

K134 GGPM-2022-040 (Geran Penyelidikan Akademik 2024) from Universiti Sains Malaysia 

in funding this research work. 

References  

Ahmed E. 2024. Student performance prediction using machine learning algorithms. Applied Computational 

Intelligence and Soft Computing 2024: 4067721. 

Almalawi A, Soh B., Li A. & Samra H. 2024. Predictive models for educational purposes: A systematic review. Big 

Data and Cognitive Computing 8(12): 187. 

Alshahrani A. 2023. Revolutionizing blended learning: Exploring current trends and future research directions in the 

era of ChatGPT. Proceedings of 2023 7th International Conference on Business and Information Management, 

pp. 41-47. 

Arnold K.E. & Pistilli M.D. 2012. Course signals at Purdue: Using learning analytics to increase student success. 

Proceedings of the 2nd International Conference on Learning Analytics and Knowledge, pp. 267-270.  

Baker R.S. & Inventado P.S. 2014. Educational data mining and learning analytics. In Larusson J.A. & White B. 

(eds.). Learning analytics: From research to practice: 61–75. New York, NY: Springer. 

BayesFusion LLC. 2023. GeNIe Modeler [software]. https://www.bayesfusion.com/genie/ 

Bellarhmouch Y., Majjate H., Jeghal A., Tairi H. & Benjelloun N. 2025. Detecting student engagement in an online 

learning environment using a machine learning algorithm. Informatics 12(2): 44. 

Bird K.A., Castleman B.L., Mabel Z. & Song Y. 2021. Bringing transparency to predictive analytics: A systematic 

comparison of predictive modeling methods in higher education. AERA Open 7(1): 1-19.  

Brinton C.G., Buccapatnam S., Chiang M. & Poor H.V. 2016. Mining MOOC clickstreams: Video-watching 

behavior vs. in-video quiz performance. IEEE Transactions on Signal Processing 64(14): 3677-3692. 

Chen F. & Cui Y. 2020. Utilizing student time series behaviour in learning management systems for early prediction 

of course performance. Journal of Learning Analytics 7(2): 1-17. 

Chen X., Zong X., Zhang D. & Cheng S. 2024. Evaluation of teaching effectiveness based on Bayesian network 

algorithm in teaching and learning process in higher education institutions. Journal of Electrical Systems 20(6): 

1800-1810. 

Conati C., Gertner A. & VanLehn K. 2002. Using Bayesian networks to manage uncertainty in student modeling. 

User Modeling and User-Adapted Interaction 12(4): 371–417. 

Culbertson M.J. 2016. Bayesian networks in educational assessment: The state of the field. Applied Psychological 

Measurement 40(1): 3-21. 

Daniel B. 2015. Big data and analytics in higher education: Opportunities and challenges. British Journal of 

Educational Technology 46(5): 904-920. 

Delen D., Topuz K. & Eryarsoy E. 2020. Development of a Bayesian Belief Network-based DSS for predicting and 

understanding freshmen student attrition. European Journal of Operational Research 281(3): 575-587. 

Fan Y., Zhang J., Zu D. & Zhang H. 2021. An automatic optimal course recommendation method for online math 

education platforms based on Bayesian model. International Journal of Emerging Technologies in Learning 

16(13): 95–107. 

Ferguson R. 2012. Learning analytics: Drivers, developments and challenges. International Journal of Technology 

Enhanced Learning 4(5-6): 304-317. 

Fujiwara Y. 2016. Predicting student dropout using machine learning techniques. Proceedings of the 9th 

International Conference on Educational Data Mining, pp. 588-591. 

Habti F.E.E., Hiri M., Chrayah M., Bouzidi A. & Aknin N. 2025. Enhancing student performance prediction in e-

learning ecosystems using machine learning techniques. International Journal of Information and Education 

Technology 15(2): 301-311. 

Heckerman D. 1997. Bayesian networks for data mining. Data Mining and Knowledge Discovery 1: 79-119. 



 

Learning Analytics of Online Students Performance in Mathematics Using Bayesian Network 
  

407 

Jayaprakash S.M., Moody E.W., Lauría E.J.M., Regan J.R. & Baron J.D. 2014. Early alert of academically at-risk 

students: An open source analytics initiative. Journal of Learning Analytics 1(1): 6-47. 

Jensen F.V. & Nielsen T.D. 2007. Bayesian Networks and Decision Graphs. 2nd Ed. New York, NY: Springer 

Science & Business Media. 

Jiang S., Huang X., Sung S.H. & Xie C. 2023. Learning analytics for assessing hands-on laboratory skills in science 

classrooms using Bayesian network analysis. Research in Science Education 53(2): 425-444. 

Jin S.J., Abdullah A.H., Mokhtar M. & Abdul Kohar U.H. 2022. The potential of big data application in mathematics 

education in malaysia. Sustainability 14(21): 13725. 

Jose B.C., Kumar M.A., UdayaBanu T. & Nagalakshmi M. 2024. Assessing the effectiveness of adaptive learning 

systems in K-12 education. International Journal of Advanced IT Research and Development 1(1): 1-8. 

Käser T., Klingler S., Schwing A.G. & Gross M. 2017. Dynamic Bayesian networks for student modeling. IEEE 

Transactions on Learning Technologies 10(4): 450-462. 

Kato Nabirye H. 2025. E-learning management systems: Best practices for implementation. Research Invention 

Journal of Current Issues in Arts and Management 4(2):43-47. 

Kim B.H., Vizitei E. & Ganapathi V. 2018. GritNet: Student performance prediction with deep learning. Proceedings 

of the 11th International Conference on Educational Data Mining, pp. 1–5. 

Kitson N.K., Constantinou A.C., Guo, Z., Liu Y. & Chobtham K. 2023. A survey of Bayesian network structure 

learning. Artificial Intelligence Review 56: 8721-8814. 

Koller D. & Friedman N. 2009. Probabilistic graphical models: Principles and techniques. Cambridge, MA: MIT 

Press. 

Kondo N. & Hatanaka T. 2018. An approach for estimation of students' learning states using Bayesian network with 

LMS Log Data. 7th International Congress on Advanced Applied Informatics, pp. 474-477. 

Kondo N. & Hatanaka T. 2019. Estimation of students’ learning states using Bayesian networks and log data of 

learning management system. International Journal of Institutional Research and Management 3(2): 35-49. 

Korb K.B. & Nicholson A.E. 2008. The causal interpretation of Bayesian networks. In Holmes D.E. & Jain L.C. 

(eds.). Innovations in Bayesian Networks: Theory and Applications: 83-116. Heidelberg: Springer Berlin.  

Lazaro G.Rd. & Duart J.M. 2023. Moving Learning: A Systematic Review of Mobile Learning Applications for 

Online Higher Education. Journal of New Approaches in Educational Research 12: 198–224. 

Lee C.A., Tzeng J.W., Huang N.F. & Su Y.S. 2021. Prediction of student performance in massive open online 

courses using deep learning system based on learning behaviors. Educational Technology & Society 24(3): 130-

146. 

Li G., Cui, J., Fu, H. & Sun, Y. 2024. Light GBM and GA based algorithm for predicting and improving students' 

performance in higher education in the context of big data. 7th International Conference on Education, Network 

and Information Technology, pp. 1-5. 

Liu F., Fan Z., Huang F., Li Y., He Y. & Hu W. 2022. Modeling Learner Behavior Analysis Based on Educational 

Big Data and Dynamic Bayesian Network. IEEE 8th Intl Conference on Big Data Security on Cloud 

(BigDataSecurity), IEEE Intl Conference on High Performance and Smart Computing, (HPSC) and IEEE Intl 

Conference on Intelligent Data and Security (IDS), pp. 48-53. 

Looi Z.N., Song P.C., Lim H.T. & Looi S.Y. 2023. A case study via Bayesian network: Investigating factors 

influencing student academic performance in online teaching and learning during COVID-19 pandemic. The 

International Conference on Data Science and Emerging Technologies, pp. 303–317. 

Lu O.H.T., Huang A.Y.Q., Huang J.C.H., Lin A.J.Q., Ogata H. & Yang S.J.H. 2018. Applying learning analytics for 

the early prediction of students’ academic performance in blended learning. Educational Technology & Society 

21(2): 220–232. 

Luan H. & Tsai C.C. 2021. A review of using machine learning approaches for precision education. Educational 

Technology & Society 24(1): 250-266. 

Lye C.T., Ng L.N., Hassan M.D., Goh W.W., Law C.Y., Ismail N. 2010. Predicting pre-university students’ 

Mathematics achievement. Procedia - Social and Behavioral Sciences 8: 299–306. 

Lyn J.T.Y., Kheng G.Y., Chow L.A. & Meng N.Y. 2024. Learning Analytic Framework for students’academic 

performance and critical learning pathways. Journal of Quality Measurement and Analysis JQMA 20(2): 127-

147. 

Millán E., Descalço L., Castillo G., Oliveira P. & Diogo S. 2013. Using Bayesian networks to improve knowledge 

assessment. Computers & Education 60(1): 436-447. 

Millán E., Loboda T. & Pérez-de-la-Cruz J.L. 2010. Bayesian networks for student model engineering. Computers 

& Education 55(4): 1663-1683. 

Moreno-Marcos P.M., Pong T.C., Muñoz-Merino P.J. & Delgado Kloos C. 2020. Analysis of the factors influencing 

learners’ performance prediction with learning analytics. IEEE Access 8: 5264-5282. 

Murphy K.P. 2002. Dynamic Bayesian networks: representation, inference and learning. PhD Thesis. Berkeley: 

University of California. 

Namoun A. & Alshanqiti A. 2021. Predicting student performance using data mining and learning analytics 

techniques: A systematic literature review. Applied Sciences 11(1): 237.  



 

Nurulhuda Ramli & Mohd Tahir Ismail 

408 

Nespereira C.G., Elhariri E., El-Bendary N., Vilas A.F., Redondo R.P.D. 2016. Machine learning based classification 

approach for predicting students performance in blended learning. The 1st International Conference on 

Advanced Intelligent System and Informatics, pp. 47-56. 

Ong H.C. & Lim J.S. 2014. Identifying factors influencing mathematical problem solving among matriculation 

students in Penang. Pertanika Journal of Social Science and Humanities 22(3): 393-408. 

Ouyang F., Wu M., Zheng L. & Jiao P. 2023. Integration of artificial intelligence performance prediction and 

learning analytics to improve student learning in online engineering course. International Journal of 

Educational Technology in Higher Education 20(1): 4. 

Pakdaman M., Moghadam M.N., Dehghan H.R., Dehghani A. & Namayandeh M. 2019. Evaluation of the Cost-

Effectiveness of Virtual and Traditional Education Models in Higher Education: A Systematic Review. Health 

Tech Asmnt Act. 3(1): e5715. 

Pearl J. 1988. Probabilistic Reasoning in Intelligent Systems: Networks of Plausible Inference. San Mateo, CA: 

Morgan Kaufmann. 

Pihlajamaa J., Karukka M. & Ålander H. 2016. Comparison of higher education student and teacher perceptions of 

e-learning. Proceedings of the 15th European Conference on e-Learning, pp. 782-785. 

Qiu W., Khong A.W.H, Supraja S. & Tang W. 2024. A dual-mode grade prediction architecture for identifying at-

risk students. IEEE Transactions on Learning Technologies 17: 803-814.  

Rizwan S., Nee C.K. & Garfan S. 2025. Identifying the factors affecting student academic performance and 

engagement prediction in MOOC using deep learning: A systematic literature review. IEEE Access 13: 18952-

18982. 

Romero C. & Ventura S. 2007. Educational data mining: A survey from 1995 to 2005. Expert Systems with 

Applications 33(1): 135-146.  

Russell S.J. & Norvig P. 2021. Artificial Intelligence: A Modern Approach. 4th Ed. Harlow, UK: Pearson Education 

Limited. 

Samsudin N.A.M., Shaharudin S.M., Sulaiman N.A.F., Ismail S., Mohamed N.S. & Husin N.H.M. 2022. Prediction 

of student’s academic performance during online learning based on regression in support vector machine. 

International Journal of Information and Education Technology 12(12): 1431-1435. 

Seffrin H., Bittencourt I.I., Isotani S. & Jaques P.A. 2016. Modelling students' algebraic knowledge with dynamic 

Bayesian networks. IEEE 16th International Conference on Advanced Learning Technologies, pp. 44-48. 

Siemens G. 2013. Learning analytics: The emergence of a discipline. American Behavioral Scientist 57(10): 1380-

1400.  

Siemens G. & Baker R.S. 2012. Learning analytics and educational data mining: Towards communication and 

collaboration. Proceedings of the 2nd International Conference on Learning Analytics and Knowledge, pp. 252-

254. 

Siemens G. & Long P. 2011. Penetrating the fog: Analytics in learning and education. EDUCAUSE Review 46(5): 

30-32.  

Sulak S.A. & Koklu N. 2024. Predicting student dropout using machine learning algorithms. Intelligent Methods in 

Engineering Sciences 3(3): 91-98.  

Suthar V. & Tarmizi R.A. 2010. Effects of students’ beliefs on Mathematics and achievement of university students: 

Regression analysis approach. Journal of Social Sciences 6(2): 146-152. 

Wan H., Li M., Zhong Z. & Luo X. 2023. Early prediction of student performance with LSTM-based deep neural 

network. IEEE 47th Annual Computers, Software, and Applications Conference, pp. 132-141. 

Wang J. & Yu Y. 2025. Machine learning approach to student performance prediction of online learning. PLoS ONE 

20(1): e0299018. 

Wang C. & Han D. 2016. Data mining technology based on Bayesian network structure applied in learning. 

Advanced Science and Technology Letters 137: 67–71. 

Wong B.T.M., Li K.C. & Liu M. 2025. The role of learning analytics in evaluating course effectiveness. 

Sustainability 17(2): 559. 

Yahaya K.H. & Hasan H. 2021. Application of Markov chain in students’ assessment and performance: A case study 

of School of Mathematical Sciences, one of the public university in Malaysia. Proceedings of the 16th IMT-GT 

International Conference on Mathematics, Statistics and their Applications 36: 01004. 

Zhao Z., Kang F., Wang J., Chen B., Yang M. & Qu S. 2023. Analysis and prediction of the factors influencing 

students’ grades based on their learning behaviours in MOOCs. Proceedings of The International Conference 

on Computer Science and Education, pp. 355-368.  

Zheng C. 2025. Application of Bayesian networks in adaptive listening assessment system in flipped English 

learning environment. Journal of Computational Methods in Sciences and Engineering 25(4): 3197-3209. 

 

 

 

 



 

Learning Analytics of Online Students Performance in Mathematics Using Bayesian Network 
  

409 

School of Distance Education  

Universiti Sains Malaysia 

11800 USM Penang, MALAYSIA 

E-mail:    rnurulhuda@usm.my* 

 

School of Mathematical Sciences  

Universiti Sains Malaysia 

11800 USM Penang, MALAYSIA 

E-mail:    m.tahir@usm.my 

 
 

 

Received: 20 March 2025 

Accepted: 16 June 2025 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
*Corresponding author       


