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ABSTRACT

In recent years, there has been growing interest in online education, including e-learning,
Massive Open Online Courses (MOOCs), Intelligent Tutoring System (ITS) and university-
level distance learning. These online environments generate vast amounts of data, such as
activity logs, course interaction data and assessment results, making learning analytics essential
to predicting student performance. This study examines the efficacy of the probability-based
model, Bayesian Networks (BNs), in predicting academic performance using learning analytics
data collected through the Learning Management Systems (LMS). It focuses on how BN is
capable of predicting student performance in an online learning environment by modeling
complex relationships among various learning analytics factors that contribute to academic
success. Using LMS data from Universiti Sains Malaysia's distance learning Mathematics
course, the study incorporates key learning analytics variables such as engagement metrics,
resource utilization, self-directed learning activities and assessment, and academic performance
to develop a BN-based predictive model. BN model revealed that low engagement significantly
hinders academic success, demonstrating its potential for early intervention and educational
improvement. The model performance was measured using classification metrics such as
accuracy, precision, recall, and Fl-score. The developed model shows overall good
performance, marked by strong precision and balanced recall in predicting the target classes
with some variability. The results revealed that BN effectively captured dependencies among
key learning analytics variables, providing actionable insights for designing personalized
interventions in online education.

Keywords: Bayesian network; learning analytics; student performance; online learning;
predictive modelling; Mathematics education

ABSTRAK

Kebelakangan ini menyaksikan peningkatan minat dalam pendidikan dalam talian, termasuk e-
pembelajaran, Kursus Dalam Talian Terbuka Besar-besaran (MOOCs), Sistem Tutor Pintar
(ITS), dan pembelajaran jarak jauh peringkat universiti. Persekitaran dalam talian ini
menghasilkan sejumlah besar data, seperti log aktiviti, data interaksi kursus, dan hasil penilaian
menjadikan analitik pembelajaran penting untuk meramalkan prestasi pelajar. Kajian ini
mengkaji keberkesanan model berasaskan kebarangkalian, Rangkaian Bayesian (BN), dalam
meramalkan prestasi akademik menggunakan data analitik pembelajaran yang dikumpulkan
melalui Sistem Pengurusan Pembelajaran (LMS). Ia memberi tumpuan kepada bagaimana BN
mampu meramalkan prestasi pelajar dalam persekitaran pembelajaran dalam talian dengan
memodelkan hubungan kompleks antara pelbagai faktor analitik pembelajaran yang
menyumbang kepada kejayaan akademik. Menggunakan data LMS kursus Matematik
pembelajaran jarak jauh Universiti Sains Malaysia, kajian ini menggabungkan pemboleh ubah
analitik pembelajaran seperti metrik penglibatan, penggunaan sumber, aktiviti pembelajaran
kendiri dan penilaian, serta prestasi akademik untuk membangunkan model ramalan berasaskan
BN. Model BN menunjukkan bahawa kurangnya penglibatan secara signifikan menghalang
kejayaan akademik, menggambarkan potensi untuk intervensi awal dan peningkatan
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pendidikan. Prestasi model diukur menggunakan metrik klasifikasi seperti ketepatan,
kepersisan, ingatan semula, dan skor-F1. Model yang dibangunkan ini memaparkan prestasi
keseluruhan yang baik dalam meramalkan kelas sasaran, melalui nilai kepersisan yang tinggi
dan ingatan semula yang seimbang, di samping terdapat sedikit kebolehubahan. Dapatan kajian
menunjukkan bahawa BN berjaya menggambarkan kebergantungan antara pemboleh ubah
utama analitik pembelajaran, sekaligus memberikan pemahaman yang boleh diambil untuk
merekabentuk intervensi peribadi dalam pendidikan dalam talian.

Kata kunci: rangkaian Bayesian; analitik pembelajaran; prestasi pelajar; pembelajaran dalam
talian; pemodelan ramalan, pendidikan Matematik

1. Introduction

E-learning systems in higher education have transformed conventional pedagogical approaches
by using advanced online technology to provide remote access to educational content and
foster interactive and personalized learning experiences. Some of the key components of these
systems include Learning Management Systems (LMS) such as Modular Object-Oriented
Dynamic Learning Environment (Moodle), Virtual Learning Environment (VLE), Massive
Open Online Courses (MOOCs) and adaptive learning technologies that customize learning
instruction to meet individual student needs. These systems bring numerous benefits such as
enhanced accessibility and convenience (Pihlajamaa er al. 2016; Alshahrani 2023), cost-
effectiveness (Pakdaman et al. 2019), personalized learning trajectories (Jose et al. 2024),
improved communication (Pihlajamaa ef al. 2016), and increased engagement through use of
multimedia resources and gamification (Kato Nabirye 2025). The effectiveness of e-learning
content delivery is enriched by its use of a wide array of media, including text, audio, images,
animation and streaming videos. With rapid technology and the advancement of learning
systems, devices like smartphones and tablets have gained significant importance in
classrooms, facilitating mobile learning (M-learning) that offers learning flexibility on the go
(Lazaro & Duart 2023).

The rise of e-learning systems in higher education has paved the way for the contribution of
learning analytics, which play a crucial role in transforming every aspect of the learning
process. According to Siemens and Long (2011), learning analytics involves the systematic
collection, analysis, and interpretation of student data from these digital learning environments
to identify patterns, predict outcomes, and enhance personalized learning experiences. This
process includes pulling a wide range of data sources, from LMS to online assessments to logs
of student interaction — anything and everything that provides a detailed and comprehensive
view of how students learn. Learning analytics assists educators and education providers by
offering actionable insights into course effectiveness, which helps continuous improvements in
curriculum design and teaching strategies (Wong et al. 2025). For instance, by analyzing
student engagement metric like how long student spend with learning materials or their
participation in online discussions, educators can identify where students might be having
difficulties and modify their teaching approaches accordingly (Baker & Inventado 2014).
Furthermore, learning analytics also plays a vital role in informing institutional capacity in
decision-making by providing data-driven insights into student success and resource allocation
(Daniel 2015). By analyzing this data, institutions can uncover important trends and patterns
that guide strategic planning and shape educational policies.

Previous research focused on modeling, measuring and predicting student performance
using learning analytics have explored a variety of predictive models, particularly machine
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learning (ML) techniques used to enhance educational results. Studies have shown that
predictive models can estimate students’ success using state-based and event-driven data, such
as demographics, past performance and engagement with online learning environments
(Almalawi et al. 2024). These models can also identify students who are at risk of facing
challenges early on, allowing for timely interventions and personalized support (Romero &
Ventura 2007). Despite these advances, significant challenges remain particularly in achieving
truly personalized evaluation. The realization of personalization is hindered by data quality,
algorithmic bias, and the need for models that can adapt to diverse and evolving learner profiles
(Almalawi et al. 2024). Traditional predictive methods lack transparency, making it difficult
for educators to understand or trust predictions (Bird 2021). To address these limitations,
leveraging Artificial Intelligence (Al) and learning analytics can improve prediction accuracy
by incorporating dynamic learning behavior and real-time assessments, allowing institutions to
monitor student progress, identify learners at risk and provide timely interventions to improve
academic success (Siemens & Baker 2012; Ouyang et al. 2023).

One such Al-probabilitistic approach, Bayesian Networks (BNs), has emerged as a
promising approach in this field for their ability to handle uncertainties in student learning
trajectories and improve the adaptability of personalized feedback mechanisms. BNs work by
representing knowledge as a network of probabilistic relationships, offering a strong framework
to model the complex interactions between various educational factors, such as student
performance, learning resources, teaching strategies and academic results (Chen et al. 2024;
Looi et al. 2023). Unlike traditional predictive models which often struggle with uncertainty
and interconnected nature of variables, BNs manage these complexities effectively, making
them particularly well-suited for educational assessment (Conati et al. 2002; Culbertson 2016).
This is particularly important in education, where elements like student motivation, prior
knowledge, and the learning environment interact in complex and sometimes unpredictable
ways. This strength makes BNs highly valuable for evaluating the impact of adaptive learning
interventions. Research has shown that BNs can accurately predict student progress, model
learning processes to estimate different learning states, and ultimately provide targeted support
and early intervention for at-risk students (Kondo & Hatanaka 2018; 2019).

Another major strength of BNs is their ability to integrate prior expert knowledge with
observed data. This makes them highly effective for a range of learning tasks such as predicting
student performance, grouping similar learning behaviors, and spotting unusual patterns
(Heckerman 1997; Wang & Han 2016; Kitson ef al. 2023). By combining domain expertise
with real-world evidence, these models achieve greater accuracy and are easier to interpret.
This feature is especially important in education, where expert insights help ensure that the
relationships modeled truly reflect real-world causes and support meaningful decision-making
for personalized learning and early intervention systems (Looi et al. 2023; Chen et al. 2024).

In addition, a key advantage of BNs lies in their inference process, which significantly
support causal inference and prediction by enabling the learning and representation of complex
cause-and-effect relationships in data. This inference mechanism allows beliefs to be
dynamically updated as new evidence comes in, making BNs a perfect fit for adaptive learning
environments that rely on continuous feedback and personalization (Wang & Han 2016). This
capability allows educators and researchers to move beyond simple correlations to rigorously
investigate how specific educational practices directly impact student achievement (Chen ef al.
2024). This also includes simulating how different teaching strategies might play out, helping
to predict possible outcomes, supporting better decision-making and tailored intervention
planning (Delen et al. 2020; Jiang et al. 2023).
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BNs have been increasingly applied in STEM education at the higher education level,
especially for mathematics online learning, to model student learning, personalize teaching and
improve educational outcomes. Foundational studies such as those by Millan et al. (2010;
2013), Seffrin et al. (2016), Késer et al. (2017) and Fan et al. (2021) demonstrate how BN
models can assess student knowledge, identify misconceptions, support adaptive learning and
course recommendation systems in online environments. However, most of this research focus
on translating mathematics knowledge into learning pathways that cater to individual needs but
do not fully incorporate learning analytics data, which is critical for addressing the diverse and
dynamic needs of learners. Furthermore, much of the existing BN research concentrates on
single data modalities such as log files, clickstream data, or grades, with limited exploration of
combining diverse data sources, including video, textual or sensor information. These
multimodal data sources are crutial for capturing the full complexity of learner behaviors (Liu
et al. 2022; Zheng 2025). There is also a notable gap in domain-specific BN models tailored
specifically for online mathematics education, which poses unique challenges such as
developing problem-solving skills and assessing mastery in a step-by-step manner.

Therefore, the objective of this paper is to develop a BN model that leverages learning
analytics data to achieve a more comprehensive understanding and prediction of student
performance, particularly within the context of online mathematics in higher education. This
model aims to effectively capture uncertainties and causal relationships in student learning
behaviors, thereby providing more accurate assessments of factors influencing academic
success and supporting personalized interventions.

2. Related Work

This section explores existing research on predicting student performance in online learning
using learning analytics, focusing on the context of data-driven education and predictive
modeling. The foundations for understanding BNs will then be introduced, as they serve as the
core methodological approach for the research presented in this paper. Finally, the application
of BNs in online mathematics within higher education is presented.

2.1. Learning analytics

Learning analytics has emerged as a vital area in online education, focused on extracting
meaningful insights about teaching and learning from data. The origins of learning analytics
can be traced back to the early 2000s, with its foundation built upon educational data mining
(EDM) and academic analytics (Siemens 2013). While it initially concentrated on helping
institutions make decision, the rapid growth of digital learning platforms has expanded
boundaries of learning analytics far beyond that, reaching areas like student engagement,
personalized learning, and predicting student performance. At its core, learning analytics
involves collecting, analyzing and interpreting data related to students, all with the goal of
maximizing learning outcomes and improving educational practices. More recent research
points to its growing role in adaptive learning systems, wherein Al-based models personalize
instructional content based on individual student’s performance (Ouyang et al. 2023).

Learning analytics leverages various key variables to assess, predict and improve student
performance in higher education. These include academic achievements, behavioral data, levels
of engagement, demographic and psychographic characteristics, institutional influences and
preferred learning methods. Some specific types of data involved are (Baker & Inventado
2014):
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Academic test scores

Class grades/level

Demographic and psychographic data

Data of learning styles, characteristics or preferences
LMS/ Content Management System (CMS) activity data
Survey data

Academic performance such as grades, exam scores, coursework completion and
assessment-related data remains as crutial factor in learning analytics. Research has shown that
predictive models based on these academic measures are effective at identifying students who
may be at risk, enabling early interventions that can improve outcomes. For example, Qiu et al.
(2024) developed a dual-mode grade prediction architecture that enables grade prediction solely
from past semester grades to identify at-risk students. The architecture uses a dual-mode
approach that first incorporates a weighted loss function into an LSTM model, followed by a
short-term Gated LSTM to facilitate early intervention strategies. Similarly, Lyn et al. (2024)
developed a unified Learning Analytics Framework that uses clustering algorithms combined
with network analysis to provide actionable insights. This framework aims to offer a
comprehensive understanding of students’ academic performance and highlight key learning
pathways.

LMS log data plays a vital role in the early prediction of academic outcomes by tracking
important student behaviors. Video-viewing behaviors—such as time spent watching
instructional videos, repeated viewing, and active interactions like pausing or seeking—
strongly correlate with student comprehension and engagement (Brinton et al. 2016; Lu et al.
2018). Likewise, early quiz attempts and scores give immediate feedback on how well students
understand the course material, making it easier to identify those who might be struggling and
to predict final grades sooner (Lu et al. 2018; Zhao et al. 2023). Homework or assignment
submissions and their timeliness further serve as strong behavioral indicators linked to
academic success (Moreno-Marcos et al. 2020).

These predictive insights are deeply connected to broader patterns of student engagement
within digital learning platforms. Engagement metrics—such as clicks on course materials,
frequency of access, time spent on digital coursework, forum participation and navigation
within the LMS—capture students’ overall interaction with the learning environment (Lu et al.
2018). For instance, Wang & Yu (2025) utilized a machine learning approach for student
performance prediction in online learning, focusing on various online behavioral indicators.
These indicators included course registration and login frequency, resource monitoring time,
resource utilization efficiency, and engagement metrics such as repeated learning resource
access and forum browsing/replying. A study by Bellarhmouch et al. (2025) proposed an
intelligent predictive model designed to classify students based on their participation and
engagement in the VLE. This algorithm aims to predict whether a learner is engaged or not,
utilizing input data that includes student information, exam scores, quiz results, and lesson
activity. Furthermore, more advanced methods like deep learning have been used to analyze
temporal LMS data, demonstrating high accuracy in predicting course performance based on
engagement behavior (Chen & Cui 2020).

These studies underscore the importance of leveraging diverse data sources to gain a
comprehensive understanding of student learning and inform effective educational
interventions. By integrating academic performance data with LMS activity and student
behavioral insights, educators can create a more comprehensive and predictive learning
analytics model that enables more targeted, timely, and effective educational interventions.
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2.2. Predictive modeling in learning analytics

Predictive modeling plays a crucial role in translating learning analytics data into actionable
insights. Acording to Ferguson (2012), the learning analytics process encompasses data
analysis, prediction, and subsequent adaptation or intervention. Within this process, predictive
modeling has become a key focus, helping educators and institutions better understand learner
behavior and improve outcomes. These models are generally built using statistical or ML
techniques to detect patterns in educational data. Many institutions have employed predictive
modeling as part of their learning analytics efforts to boost student success (Arnold & Pistilli
2012; Jayaprakash et al. 2014; Sulak & Koklu 2024).

The application of ML and data mining techniques have gained considerable attention for
their ability to predict learning outcomes and identify at-risk students. Recent advancements
have enabled the integration of diverse learning analytic variables into highly accurate
predictive models. Numerous studies and systematic reviews highlight the use of various ML
algorithms such as Artificial Neural Networks (ANN), Support Vector Machines (SVM),
Decision Tree (DT), Random Forests (RF) and ensemble methods (Namoun & Alshangiti 2021;
Luan & Tsai 2021; Rizwan et al. 2025).

Deep learning approaches have also shown strong potential. For example, Kim et al. (2018)
introduced the GritNet model, which uses sequential event data from MOOCs to make early
predictions about whether students will complete a course. It performed better than logistic
regression, especially in the early weeks of a course. Similarly, Lee et al. (2021) developed two
deep neural networks—one that used video-viewing behaviors to predict learning outcomes,
and another based on exercise data to predict question accuracy. Both models effectively
measured student performance using learning behaviors and responses.

In the context of hybrid learning during the COVID-19 pandemic, Wan er al. (2023)
developed a powerful deep learning model that combined Bidirectional Long Short-Term
Memory (LSTM), Global Average Pooling and TIME MASK components. This model excelled
at making early predictions in hybrid learning environments. Another study by Li ef al. (2024)
created a system using a lightweight Gradient Boosting Machine (LightGBM) optimized with
a Genetic Algorithm (GA), which led to measurable improvements in students’ online learning
performance, including grades, midterms and GPA. Recently, Wang and Yu (2025) used
logistic regression based on eleven behavioral indicators from online learning, showing strong
links between student engagement such as time spent and initiative, and academic outcomes.

Several studies have also compared different ML models across educational settings to
determine which ones work best for predicting student performance. For example, Nespereira
et al. (2016) analyzed two years of Moodle access logs in a blended learning environment and
found that RF outperformed SVM in predicting student success, emphasizing the importance
of time-based interaction data. In a separate study, Ahmed (2024) tested several classifiers
including SVM, DT, Naive Bayes, and K-Nearest Neighbors (KNN) on e-learning data. After
tuning, SVM achieved the highest prediction accuracy at 96%,-while Naive Bayes lagged due
to its assumption of independent features. Similarly, Habti et al. (2025) evaluated RF, Logistic
Regression, SVM and Linear Discriminant Analysis (LDA) using open university data and
found that RF was the most accurate, achieving 91% accuracy.

Despite their success, many existing ML models still face challenges, particularly in terms
of explain ability and the lack of probabilistic reasoning. This limits their ability to provide
deep, evidence-based insights that are essential for designing effective, personalized learning
interventions. In contrast, BNs offer a more comprehensive and holistic modeling approach by
capturing complex causal relationships and accounting for uncertainty in student learning
processes. This allows for more precise, actionable insights that support personalized
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interventions, making BNs especially well-suited for educational settings. The following
section discusses the BN framework in detail.

2.3. Bayesian Network

Bayesian Network (BN) fall into the realm of several fields such as graph theory and probability
(Koller & Friedman 2009). BN is utilized as a probabilistic modeling approach capable of
providing a flexible representation of relationships among variables while maintaining a high
level of interpretability (Pearl 1988). BN represents probability distribution by approximating
a joint probabilistic structure through a Directed Acyclic Graph (DAG), i.e., a directed graph
with-out cycles. The variables (or nodes in the network) can be in two categories, the parent
nodes—variables that are causes of a particular node, and child node—the consequence of that
node. The nodes with no parent nodes are called root nodes. The variables associated with the
nodes can be discrete—take on a finite number of states, or continuous—an infinite range of
possible values. The directional arches from parent to child nodes represent causal influences,
quantified by the conditional probability values, which are represented in a Conditional
Probability Table (CPT) for discrete variables. Each probability in a CPT represents the
probability of a certain state in a child node given a single state or a set of states in parent nodes.
For nodes that have no parents, the CPT will contain the prior probability values for discrete
variables or marginal distribution for continuous variables.

Assume that a set of random variables V = {X;, X,, ..., X;;} and a DAG U=(V,D) where V is
the set of variables in the network and D represents the directed edges. Each variable X; is
associated with a conditional probability distribution P(X i|[Pa(X l-)). The joint probability of all
variables is given by:

P(X1, X2, -, Xn) = [TiL; P(Xi[Pa(Xy)) (1)

where Pa(X;) represents the parent nodes of X;. The marginal probability of variable Y is
obtained by summing over all possible values of other variables:

P(Y;) = ZxP(X = x)P(Y = yj|X = x;). )
The basic principle governing BN is Bayes’ theorem given by;

P(X)P(Y;|X;
P(xi[y;) = “EL ) (3)
where P (Xl-|Yy) is the posterior probability, P(X;) is the prior probability and P(Y]-|Xl-) is
the likelihood.

There are three main stages to design and build the BN: variables structuring, quantification
and inference. The first stage is to identify variables and their dependencies or cause-effect
relationship. Structure learning is the process of defining the optimal configuration of a BN to
capture relationships between variables effectively. There are two main approaches to
constructing a BN structure: expert-driven and algorithmic. In the expert-driven approach,
domain specialists manually define the network based on their knowledge of causal
dependencies within the system. This method is particularly useful when data is limited or when
prior knowledge is essential in guiding the model's structure (Russell & Norvig 2021). The
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second approach relies on algorithmic methods, where ML techniques infer the network
structure from data (Murphy 2002).

Once the structure of a BN is determined, the next step is parameter estimation, which
involves defining the prior probability (for each state in the parent node) and CPT values (for
each state in the child node) for each node in the network. Two widely used approaches for
parameter estimation are based on exact data, utilizing methods such as Maximum Likelihood
Estimation (MLE) and Bayesian Estimation, or on expert judgment when data is unavailable,
through a procedure known as expert elicitation (Jensen & Nielsen 2007).

The third stage is to make an inference on the variables when new information (called
evidence) of any variables is entered in the network. When evidence is observed in one of the
variables, it can propagate over the network and the probabilities of all other variables that are
affected are updated as well. BNs involve two types of inference. The first is causal (or top-
down) inference, in which probabilities in child nodes are computed based on evidence from
parent nodes. The second is diagnostic (or bottom-up) inference, where evidence is observed in
child nodes, and the goal is to infer the most likely causes in the parent nodes.

Various software packages are available for building BN, including Netica, Hugin,
Analytica, GeNle, and Bayes Net Toolbox. These tools facilitate the efficient construction,
analysis, and visualization of BN, making the modeling process more accessible. In this study,
GeNIe Modeler (BayesFusion 2023) is used to develop the BN model due to its high quality,
flexible data-generation capabilities, user-friendly graphical interface, and free availability for
academic users. It was developed by the Decision Systems Laboratory at the University of
Pittsburgh and is part of the SMILE (Structural Modeling, Inference, and Learning Engine)
library which allows integration with other applications.

2.4. Bayesian Networks in online mathematics higher education

BNs have increasingly been applied in online mathematics education to model student learning
to better understand student learning, deliver personalized instruction, and improve outcomes
in higher education. One of the early foundational studies by Millan et al. (2010) laid important
groundwork in building Bayesian Student Model (BSM) for procedural mathematics domains,
specifically modeling the Simplex algorithm used in linear programming. In their work, student
knowledge was represented as a sequence of interconnected skills necessary for completing
each step of the algorithm. This approach demonstrated how adaptive tutoring systems can
tailor instruction to a student's mastery of complex, step-by-step mathematical procedures in an
online learning setting.

Building on that foundation, Millan et al. (2013) integrated a Generic Bayesian Student
Model (GBSM) into the Mathematics Education Project’s computerized testing system to
diagnose student knowledge of first-degree algebraic equations. Their model was validated with
152 students who completed both computerized and written exams. Results showed strong
alignment between BSM diagnoses and expert grading in written tests, but weaker agreement
for computerized assessments. This study revealed challenges in applying BN diagnostics to
automated online testing environments.

Seffrin et al. (2016) advanced BN applications by developing a Dynamic Bayesian Network
(DBN) for step-based Intelligent Tutoring Systems (ITS) in assessing algebraic knowledge.
Rather than only analyzing final answers, their model assessed each algebraic operation
performed during problem-solving to infer understanding of both concepts and skills. Their
model also relied on explicitly defined prerequisite relationships among knowledge
components to support fine-grained learning assessments. This allowed for more accurate
detection of misconceptions and enabled highly personalized feedback.
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Further expanding BN capabilities, Késer et al. (2017) used DBNs to overcome the
limitations of traditional Bayesian Knowledge Tracing (BKT). Their model simultaneously
tracked multiple interconnected skills across various domains, including mathematics.
Evaluated on large-scale datasets, the DBN approach proved more accurate at predicting
students’ knowledge states and helped design personalized instructional strategies in intelligent
online tutoring systems.

Fan et al. (2021) tackled the challenge of course personalization in online math platforms
by developing a Bayesian-based recommendation model. This model encoded causal relations
between knowledge points and used both prior and posterior information to recommend optimal
course selections. It outperformed traditional collaborative filtering methods, allowing learners
to independently choose courses aligned with their current progress and personal preferences,
ultimately supporting greater autonomy in online learning.

In Malaysia, research applying predictive modeling, particularly BNs to understand
mathematics learning in higher education is still limited but gradually growing. To date, only
one prominent study by Ong and Lim (2014) has applied BNs in the context of mathematics
Malaysian higher education. Their research explored the factors influencing problem-solving
among pre-university students and found that a poor understanding of mathematical symbols
significantly reduced students’ confidence and success. Other studies in Malaysia have applied
different predictive models to mathematics performance but have mostly focused on face-to-
face learning. For example, Lye et al. (2010) applied various ML techniques including Back-
propagation Neural Networks (BPNN), Classification and Regression Trees (CART) and
Generalized Regression Neural Networks (GRNN) using enrollment and exam performance
data from pre-university students to predict their mid-semester and final exam scores in
mathematics. Among these, BPNN achieved the highest prediction accuracy. Similarly,
Samsudin et al. (2022) utilized SVM regression on undergraduate CGPA data and found that
the radial basis function kernel produced the most accurate academic performance predictions.

In addition, Suthar and Tarmizi (2010) applied logistic regression to survey data from
university undergraduates, showing that students’ beliefs about mathematics and their self-
confidence are important predictors of academic success. Yahaya and Hasan (2021) used
absorbing Markov chain models on enrollment and academic performance data of
undergraduate mathematics students to analyze patterns of retention, progression, and
graduation, demonstrating how probabilistic models can provide clear insights into academic
trajectories. More broadly, research has highlighted the impact of advanced technologies and
psychological factors in mathematics education. For instance, Jin ef al. (2022) reviewed how
Industry 4.0 technologies like Big Data and Artificial Intelligence could transform teaching
practices and decision-making in Malaysian mathematics education.

Overall, BNs in online mathematics education have proven effective at utilizing detailed,
step-by-step problem-solving data and capturing the causal relationships between different
knowledge components. This enables the delivery of personalized feedback and the creation of
adaptive learning pathways. However, in Malaysia, research applying predictive modelling,
especially BNs to mathematics learning in higher education is still limited and tends to focus
mainly on traditional face-to-face settings rather than online or e-learning environments.
Despite the rapid growth of digital education platforms, Malaysian studies have yet to fully
explore the use of predictive BN models that integrate comprehensive, real-time learning
analytics data. This study seeks to address this gap by developing a BN model designed to
predict student performance in online mathematics courses using rich learning analytics data.
Such a model aims to provide a deeper and more nuanced understanding of student learning
behaviors, supporting personalized interventions tailored to the specific needs of online
learning in Malaysian higher education.
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3. Bayesian Network Framework for Performance Modelling

In this section, we present a framework for developing a BN model to analyze student
performance using learning analytics. Figure 1 illustrates the framework, which integrates
learning analytics principles with BN modeling.

Constructing a Bayesian Network for Learning
Analytics

Learning Analytics Data

L] J

Normalize and Discretize
Data

Select Key Variables

Define Network Structure

Estimate Model
— Parameters

Train and Validate Model

Analyze and Interpret Insights

Figure 1: Framework for constructing Bayesian Network for learning analytics

The detailed process can be explained as following steps:

(1) Select key variables. The first step in building a BN is to identify and select relevant
learning analytics variables that significantly impact student performance. These variables
serve as nodes in the network and can be categorized into academic (e.g. GPA, exam scores
and assignment results) and behavioral data (e.g. log activity, engagement levels, and
interaction with learning resources). The selection of these variables is based on their
relevance, availability, and predictive power in determining learning outcomes.

(2) Normalize and discretize data. This step is data preprocessing, which ensures consistency
and compatibility with BN modeling. Normalization is used to transform numerical values
into a standardized range, allowing for better comparability across different data points.
Discretization converts continuous variables into categorical states which makes the data
more suitable for Bayesian inference.

(3) Define network structure. The network structure defines the causal relationships between
variables, ensuring a logical and interpretable model. This can be done either data-driven
structure learning or expert-driven structure, or combination of both approaches. The
structure must also respect chronological order, ensuring dependencies reflect realistic
learning progressions (e.g., prior coursework influencing final grades).
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(4) Estimate model parameters. Once the BN structure is established, the next step is to
estimate its parameters by determining the prior probabilities of parent nodes and the CPTs
for child nodes. CPTs define the likelihood of a node taking a specific value based on the
values of its parent nodes which captures the relationships between variables. These
probabilities can be estimated using methods such as MLE, Bayesian estimation, or expert
elicitation.

(5) Train and validate model. To evaluate its performance, the dataset is divided into training
and test sets, ensuring that the model learns from one portion of the data and is tested on
another. Cross-validation techniques, such as k-fold validation, are used to assess the
model’s reliability and consistency. Additionally, the predictions made by the BN are
compared with traditional ML models to determine its effectiveness.

(6) Analyze and interpret insights. Once the BN is trained, it provides valuable insights into
student performance patterns by analyzing causal relationships between student behaviors
and academic outcomes. The model also enables early identification of at-risk students by
examining probabilistic dependencies, allowing for timely interventions. Educators and
administrators can use these insights to identify key factors influencing academic success
and helping them prioritize strategies that have the most significant impact on student
outcomes.

Regarding steps (5) and (6), some researchers prefer to first analyze and interpret model
insights, while others prioritize training and validation. This interchangeability reflects the
iterative nature of model development, where initial analyses inform subsequent validation and
refinement. In the following section, we present the process of applying the BN for predictive
analysis within the proposed framework.

4. Application of the Proposed Framework

This section explains how the proposed BN framework is applied to predict student
performance in solving system of linear equations using Mathematica software. We begin by
defining the dataset and key learning analytics variables, followed by developing the BN
including its structure and probability estimation. Finally, we evaluate the model’s accuracy
and reliability using performance metrics.

4.1. Dataset and variables

In this study, data were collected from students enrolled in the Mathematics Software
Laboratory course at the School of Distance Education (SDE), Universiti Sains Malaysia
(USM), during the 2023—2024 academic session. The dataset comprises educational records of
nine students enrolled in the course during this period. SDE conducts online learning through
the Moodle LMS, utilizing a blended learning approach. Students are required to attend online
lectures via the Webex platform, engage in independent learning activities and complete various
assessments integrated within the Moodle LMS, including multiple-choice quizzes, short-
answer exercises, and problem-solving assignments designed to evaluate their understanding
of mathematical concepts and software applications. To simplify BN modeling, we focus on
data from a specific subtopic in the course—solving systems of linear equations using
Mathematica software.
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Table 1: The variables used for the construction of the Bayesian Network (BN) model

Variable (nodes)

Description

States

(i) Student engagement
Course_hits

Days_with_access

Resources_with_access

The number of times a student accesses the course
materials in the LMS.

The total number of days a student logs into the
course platform.

The amount of learning resources a student interacts
with.

Low, Medium, High
Low, Medium, High

Low, Medium, High

Course_Participation Measures a student’s engagement in activities in the Low, High
LMS.

Attendance Rate The percentage of scheduled classes or sessions a Low, High
student attends.

(i1) Resource untilization

Familiarity with Mathematica  Indicates whether a student has prior experience Yes, No

Course_Module Basic Functio

using Mathematica
Completion of Basic Functions module

Complete, Not

ns complete

Course_Module SLE Completion of System of Linear Equations (SLE) Complete, Not
module complete

Webex Lecture Module Basic  Attending Webex lecture on Basic Functions. Complete, Not
_Functions complete

Video Mathematica for Begin = Accessed the introductory Mathematica video Complete, Not
ner complete

Webex Lecture Module SLE Attended the Webex lecture on solving SLE. Complete, Not
complete

Video Matrix Manipulation Accessed the video on matrix manipulation. Complete, Not
complete

(iii) Self-Learning and
assessment
Self Learning Basic_Calculati

Engaged in self-learning activities for basic

Complete, Not

on calculations. complete

Self Learning Matrices Engaged in self-learning activities related to matrices. Complete, Not
complete

Gamification Quiz Basic Calc  Participation in gamified quizzes on basic Complete, Not

ulation calculations. complete

Assessment Solving SLE Completion of the assessment on solving SLE. Complete, Not
complete

(iv) Performance
Mathematica_Laboratory Exer
cise

Examination_Grade

Solving_SLE

Participation in lab exercises using Mathematica.

The final exam score categorized into different
performance levels.

Achievement in solving the system of linear
equations.

Low, Medium, High

Medium, High

Low, Medium, High

The BN model captures the relationships among 19 learning analytics variables grouped into
several key domains. The BN model captures the relationships among 19 learning analytics
variables grouped into several key domains. These include measures of student engagement
(e.g., frequency of course access, participation levels and attendance rates); resource utilization
variables, reflecting students’ interactions with various instructional materials (e.g., online
lectures, course modules and tutorial videos); self-directed learning activities and assessment
variables (e.g., use of open resources and online gamification); and academic performance
indicators (e.g., laboratory exercises, examinations and problem-solving tasks) to

400



Learning Analytics of Online Students Performance in Mathematics Using Bayesian Network

comprehensively evaluate learning outcomes within the topic. The variables used for the
construction of BN model are listed in Table 1. Some variables are discretized into categories
to represent distinct states in the BN. For example, “Course hits”, “Days_with _access” and
“Resources with access” are discretized into three categories Low, Medium, and High to better
represent engagement levels. Meanwhile, “Familiarity with Mathematica” is categorized as
Yes or No to indicate whether a student has prior experience using the software. The variables
“Course_Module Basic Functions” and “Course_Module SLE” are defined by completion
status, classified as either Complete or Not Complete.

4.2. BN modelling of student performance

The process of fitting a BN is called ‘learning’. In this process we are looking for an optimal
configuration for our model that fully describes the relationship between the variables (the
dependency structure of the variables). An optimal configuration must be well-suited for its
corresponding application. With this regard, there are two approaches for designing the
configurations for BN, leveraging expert domain-knowledge and utilizing mathematical
algorithms. Given the limitations of available data and the need to include pedagogical
knowledge, we utilized expert elicitation to define the network structure. Specifically,
pedagogical experts were consulted to identify and define the relationships among key variables
of student engagement, resource utilization, self-directed learning activities and assessment,
and academic performance. Although expert-driven network construction can introduce
potential biases, preliminary experiments demonstrated the potential for strong predictive
performance.

In this study, the network structure was developed through elicitation with a domain
expert—a mathematics lecturer who is well-versed in the subject matter relevant to the model.
The elicitation was conducted through a structured verbal interview one-on-one format allowed
for in-depth exploration of the expert’s knowledge and reasoning, enabling for clarify any
ambiguities and probe specific relationships among variables systematically. The conversation
was recorded and transcribed, and key elements shaping the network structure were extracted
by identifying consistent causal links and dependencies mentioned by the expert. This approach
aligns with practices in similar expert-elicited BN modeling studies, such as the work by Marcot
et al. (2006), where a single expert or a small group of experts provide detailed knowledge
through structured interviews, which is then carefully translated into the BN structure.

The constructed BN of the learning analytics variables and student performance in solving
system of linear equations using Mathematica software is shown in Figure 2. It represents the
relationships between various learning analytics metrics and student activities in an online
mathematics course. The input nodes represent student engagement indicators, including course
hits, days with access, resource availability, familiarity with Mathematica, attendance rate, and
course participation. These factors influence student engagement with different learning
modules, such as Webex lectures, video tutorials, self-learning exercises, and quizzes. These
resources act as intermediaries, helping students build foundational knowledge before they
attempt assessments. The final node, Solving System of Linear Equation (SLE) using
Mathematica software, represents a key competency in the course and is the outcome of a
sequence of learning interactions.
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Figure 2: The constructed Bayesian Network (BN) of learning analytics indicator and student performance in
solving systems of linear equations using Mathematica software

Once the model configuration is determined, the parameters are estimated using the data in
the training set. Specifically, the Expectation-Maximization (EM) algorithm was employed to
learn the parameters, iteratively updating the CPTs tables based on observed data. The EM
algorithm using the fundamental probabilistic principles of BN using Eq. (1) and Eq. (2) to
refine CPTs through alternating expectation and maximization steps. This approach was
particularly suitable for handling potential missing data within our dataset, a common challenge
in educational learning analytics. The BN modeled in GeNle Modeler (see Figure 3) visually
represents the network structure and the learned probabilities.
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Figure 3: Bayesian Network (BN) utilizing Expectation-Maximization (EM) for parameter learning
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This BN model in Figure 3 indicates a causal chain of factors culminating in varying levels
of proficiency in "Solving SLE using Mathematica Software." High "Attendance Rate" (89%)
and "Familiarity with Mathematica" (78% Yes) provide a strong foundation, leading to
substantial engagement with initial modules like "Webex Lecture Module Basic Functions"
(82% Complete) and "Course Module Basic Functions" (54% Complete). However, a
significant decline in completion rates for "Video Mathematica for Beginner" (33% Complete)
and "Gamification/Quiz Basic Calculation" (37% Complete) suggests an early struggle with
applying basic concepts. This challenge persists in advanced activities like "Video Matrix
Manipulation" (29% Complete) and "Assessment Solving SLE" (32% Complete), indicating a
growing difficulty in translating theoretical knowledge into practical application. Despite a
considerable portion of students achieving "Medium" examination grades (49%), this does not
translate into high proficiency in the practical application of solving SLE using Mathematica,
where only 46% achieve a "High" score. The network reveals that high engagement at each
stage significantly increases the likelihood of success in the subsequent learning activities,
culminating in a higher probability of achieving high proficiency in solving SLE using
Mathematica, though a significant portion of students still demonstrate low proficiency (21%),
indicating potential gaps in the learning process despite strong foundational elements.

One of the most powerful capabilities of BN is their ability to perform inference. As
illustrated in Step (6) (see Figure 1), interpreting insights provides valuable understanding of
performance patterns, including the early identification of at-risk students through probabilistic
dependencies. In this study, a diagnostic inference mechanism is employed to identify students
struggling to master systems of linear equations in Mathematica and to uncover the underlying
factors contributing to their difficulties. Applying Eq. (3), we observed evidence of 100% of
students scoring low in solving SLE using Mathematica, resulting in the subsequent update of
all other node states within the network (see Figure 4). One of the most powerful capabilities
of Bayesian Networks is their ability to perform inference. Diagnostic inference, in particular,
allows for the identification of high-risk students struggling with mastering systems of linear
equations in Mathematica and helps reveal the factors behind their difficulties.
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Figure 4: Diagnostic inference in Bayesian Network (BN) for identifying key learning challenges
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This BN model reveals a 100% low score in "Solving SLE using Mathematica Software,"
highlights a significant disconnect between initial engagement and ultimate performance.
Despite a strong foundation indicated by high "Attendance Rate" (89%) and "Familiarity with
Mathematica" (78% Yes), students encounter critical challenges in applying their knowledge
to complex tasks. The initial engagement with "Course Module Basic Functions" (55%
Complete) and "Webex Lecture Module Basic Functions" (82% Complete) suggests a
willingness to learn. However, a sharp decline in engagement with "Video Mathematica for
Beginner" (33% Complete) marks the first major red flag, indicating a potential knowledge gap
early on. This decline continues with "Video Matrix Manipulation" (29% Complete) and
"Assessment Solving SLE" (33% Complete), demonstrating a struggle to translate theoretical
understanding into practical problem-solving. While "Examination Grade" shows a significant
portion achieving medium grades (64%), this knowledge does not translate into practical
application, as evidenced by the 100% low score in the culminating task. This network suggests
that while students are present and possess foundational knowledge, they struggle with
advanced concepts and practical application, indicating a need for targeted interventions
focusing on bridging the gap between theory and practice.

In the next section, the result of applying this model for predicting the student performance
is presented.

4.3. Model evaluation

BN are typically evaluated using classification metrics such as accuracy, precision, recall, and
F1-score to assess their predictive performance (Heckerman 1997; Korb & Nicholson 2008).
Accuracy measures the overall correctness of predictions, precision quantifies the proportion
of true positive predictions among all positive predictions, recall (or sensitivity) measures the
proportion of true positives detected among all actual positives, and F1-score provides a
harmonic mean balancing precision and recall. Most of these metrics are derived from the
confusion matrix, which cross-tabulates the counts of correctly and incorrectly predicted
instances for each class. In a binary classification model, the confusion matrix consists of four
key components: True Positives (TP), representing the number of correctly predicted positive
cases; True Negatives (TN), representing the number of correctly predicted negative cases;
False Positives (FP), representing negative cases incorrectly predicted as positive; and False
Negatives (FN), representing positive cases incorrectly predicted as negative. Essentially, the
diagonal cells (from the top-left to the bottom-right) contain the correctly classified instances,
while all off-diagonal cells represent misclassifications. The following performance metrics are
used to evaluate the prediction methods:

TP+TN
Accuracy=——— 4
U Ay = TN+ FP+FN “)
Precision= T ®)
" TP+FP
TP
Recall=
ccall= TN (6)

PrecisionxRecall
F1-Score=2 X ——— @)

Precision+Recall

404



Learning Analytics of Online Students Performance in Mathematics Using Bayesian Network

Table 2: Performance measures of BN model

Metric Value Mean + Standard Deviation (SD)
Accuracy 0.7778 (0.4556 £ 0.366)
Precision 0.8413 (0.4191 £0.3886)
Recall 0.7778 (0.4556 = 0.366)
F1 0.7407 (0.4168 +0.3724)

To evaluate the BN model’s performance, we used a 70/30 train-test split where 70% of the
data was used for training and the remaining 30% was reserved for testing to assess predictive
accuracy. Table 2 shows the results of the performance BN model. The model achieved an
accuracy of 0.7778, indicating that approximately 78% of the predictions were correct.
However, the relatively large standard deviation (+0.366) in accuracy suggests some variability
across different test samples or folds, implying that the model’s consistency may fluctuate
depending on the data subset. Precision was notably high at 0.8413, demonstrating that when
the model predicts a positive outcome, it is correct over 84% of the time. This high precision,
despite a moderate standard deviation (+0.3886), reflects the model’s strength in minimizing
false positive predictions. The recall value matched the accuracy at 0.7778, which means the
model successfully identified about 78% of the actual positive cases, though the standard
deviation again indicates variability in sensitivity across samples. The F1-score, which balances
precision and recall, was 0.7407, suggesting a reasonably good overall balance between
correctly identifying positive cases and limiting false positives. The associated standard
deviation (+£0.3724) underscores some instability in performance but still supports the model’s
robustness. Overall, these results indicate that the developed BN model performs well in
predicting the target classes, with strong precision and balanced recall. The observed variability
highlights the need for further validation and potential model refinement to ensure consistent
performance across diverse dataset.

5. Conclusion

The present study introduced a BN framework utilizing learning analytics indicators to predict
student performance in online learning. To achieve this, the framework modeled academic
success through a sequence of six key steps for constructing a BN tailored for this predictive
task. These steps encompassed: (1) the selection of pertinent academic and behavioral variables;
(2) the normalization and discretization of the data; (3) the definition of the network structure
to represent underlying causal relationships; (4) the estimation of the model parameters; (5) the
training and validation of the model's predictive capabilities; and (6) the analysis and
interpretation of the resulting insights to elucidate performance patterns and facilitate the
identification of students at potential academic risk, thereby enabling timely interventions. The
proposed framework was subsequently applied to student data obtained from individuals
enrolled in an online Mathematics subject at public universities in Malaysia. The constructed
BN model revealed critical insights into the dynamics of student learning pattern, notably
indicating a direct correlation between low student engagement in core learning activities and
diminished competency in achieving key course outcomes. This observation was further
confirmed by the model's inference mechanism, which highlighted the significant negative
impact of low engagement on overall student performance.

A primary contribution of this work is the distinctive approach in developing BN in online
education, achieved by integrating learning analytics and mapping the subject's learning path.
This approach allows for accurate student performance prediction, thereby enabling the early
detection of at-risk students and the subsequent implementation of targeted interventions.
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Future research should prioritize the enhancement of model accuracy by incorporating temporal
factors, such as the timing of prerequisite courses, alongside personal, social, and psychological
variables. This would provide a more comprehensive understanding of student capacity.
Ultimately, this study demonstrates the potential of BN powered by learning analytics to
contribute meaningfully to the improvement of educational practices and student outcomes
within online learning settings.
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