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ABSTRACT

This study highlights the new adaptive predictor-corrector scheme which is combined with the
Gauss’ forward interpolation strategy to handle the properties of time delays in a single delay
pantograph. This scheme provides an entirely new perspective on accurate and efficient ap-
proaches since the scheme considered a technique that employs both odd and even differences
under the central interpolation approximation which can be adapted in the particular pantograph
delays. To guarantee that the time delay approximation yields a high degree of accuracy in com-
parison to alternative methods, a thorough analysis is given to the interpolation node selection.
Aside from that, the convergence and stability analysis which includes the order, error constant,
zero-stability and consistency of the suggested approach are examined. Numerical problems
are provided to show the practical advantages of the suggested algorithms and to compare with
the exact results. Based on the findings, it can be concluded that the numerical method of the
adaptive predictor-corrector scheme, which was used to solve the single pantograph delay, is
reliable with high error accuracy. The novelty of the method lies in its adaptive multistep struc-
ture combined with Gauss’s interpolation, which enhances precision and improves the handling
of time-delay terms.

Keywords: vanishing lags; stability analysis; proportional delays; Gauss’s forward interpolation

ABSTRAK

Kajian ini menekankan mengenai skema peramal-pembetul penyesuaian baharu yang diga-
bungkan dengan strategi interpolasi ke hadapan Gauss untuk mengendalikan sifat lengah masa
dalam pantograf lengah tunggal. Skim ini memberikan perspektif yang sama sekali baharu
tentang pendekatan yang tepat dan cekap kerana skim ini dianggap sebagai teknik yang meng-
gunakan kedua-dua perbezaan ganjil dan genap di bawah penghampiran interpolasi pusat yang
boleh disesuaikan dalam lengah pantograf tertentu. Untuk menjamin bahawa anggaran lengah
masa menghasilkan ketepatan yang tinggi berbanding kaedah alternatif, analisis menyeluruh
diberikan kepada pemilihan nod interpolasi. Selain itu, analisis penumpuan dan kestabilan yang
merangkumi susunan, pemalar ralat, kestabilan sifar dan ketekalan pendekatan yang dicadan-
gkan dinilai. Masalah berangka disediakan untuk menunjukkan kelebihan praktikal algoritma
yang dicadangkan dan untuk membandingkan dengan keputusan yang tepat. Berdasarkan ka-
jian, dapat disimpulkan bahawa kaedah berangka skema peramal-pembetul penyesuaian, yang
digunakan untuk menyelesaikan lengah pantograf tunggal, boleh dipercayai dengan ketepatan
ralat yang tinggi. Keistimewaan kaedah ini terletak pada struktur penyesuaian berbilang langkah
bersama interpolasi Gauss, yang meningkatkan ketepatan dan keupayaan menangani terma
kelewatan dengan lebih berkesan.

Kata kunci: lengah lenyap; analisis kestabilan; lengah berkadar; interpolasi ke hadapan Gauss
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1. Introduction

A differential equation comprises of one or more functions associated with their derivatives.
They are well-known to serve as basic mathematical framework for simulating a broad spectrum
of scientific, engineering, and physical phenomena. Delay differential equations (DDEs) are
one type of differential equation in which the derivative of the unknown function at a certain
time is given in terms of the values of the function at a previous time (Jamilla et al. 2020). Since
the solution of DDEs requires knowledge of the current state and certain previous time states,
therefore DDEs has comprehensive applications in explaining different phenomena in various
fields, such as sciences, engineering, and economics, according to (Buedo & Liz 2018; Rihan
2021; Sardar et al. 2021).

Ordinary differential equations (ODEs) and DDEs are two equations of describing physical
phenomena, but they differ in that ODEs’ derivatives of unknown functions rely solely on the
present value of the independent variable. The features, behavior, and solutions of delay dif-
ferential equations have thus far been the subject of extensive research by numerous scholars
(Aziz et al. 2023; Chen et al. 2020; Ockendon & Tayler 1971; Zhang et al. 2021). This is
because DDEs prove to be essential in situations when ODE-based models fail.

Based on Ockendon and Tayler (1971), to model the movement of the pantograph head on an
electric locomotive, they suggested a first-order pantograph delay differential equation, which
is provided by

u′(t) = au(t) + bu(ct), t > 0, (1)

where a and b are real constants and c is a pantograph time delay in the range, 0 < c < 1. Eq.
(1) is subjected to the initial condition

u(0) = λ, (2)

where λ is a real constant.
Note that the proportional delay is part of the pantograph time delay equation. The numerical

solution of this equation is more challenging when the delays are variable or proportional than
when they are constant. A number of scenarios will arise when working with proportional
delay, such as vanishing lag and circumstances in which the delay term is inside the range of
preceding points. In order to address with all the properties of the time delays, a thorough
localization technique must be taken into consideration.

Several scholars have conducted in-depth analytical and numerical solutions of pantograph
time delay. To name a few, mono-implicit Runge Kutta order two (Rihan 2024), discontinuous
Galerkin method (Jiang et al. 2020), Legendre pseudospectral method (Jafari et al. 2021) and
the homotopy pertubation method in (Albidah et al. 2023; Vilu et al. 2023). In the study by
Bahgat (2020), the author approximates an analytical solution for the multi-pantograph delay
with higher-order differential equations by combining the Laplace transform with the varia-
tional iteration method. In addition to that, initial value problems of linear and non-linear pan-
tograph delay differential equations were solved using feedforward artificial neural networks
with Levenberg-Marquardt backpropagation and Bayesian regularization in (Khan et al. 2020).

Meanwhile, some of the researchers have discovered few studies in the predictor-corrector
scheme such as (Li et al. 2011) solving the nonlinear parabolic differential equations, (Jayaku-
mar & Kanagarajan 2014) investigating the hybrid fuzzy differential equations, and (Oghonyon
2018) solving the fourth order ordinary differential equation in the block method. Moreover,
a strong predictor-corrector approach was also developed for numerical solutions of Ito-type
stochastic delay differential equations in (Niu et al. 2015). A sixth-order Adams-Bashforth-
Moulton block method was also introduced to solve constant and time-dependent neutral delay
equations with better accuracy (Puzi & Aziz 2023). Also, the author in (Kumar & Daftardar-
Gejji 2019) suggested a new family of six predictor-corrector methods for resolving fractional
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differential equations that are not linear. A similar application showed how numerical schemes
can be tailored to problems with uncertainty by proposing a fuzzy numerical method for ad-
dressing a one-dimensional steady-state heat conduction issue with a constant gradient (Husin
et al. 2025).

Despite the existence of various numerical schemes for solving pantograph-type delay dif-
ferential equations, many of these approaches either assume constant delays or require complex
implementation structures, particularly when dealing with proportional or vanishing lags. Most
existing predictor-corrector methods in the literature do not adequately address the challenges
of delay term approximation when the delay lies between known mesh points, especially in
single-delay pantograph models.

Motivated by the limitations of existing approaches, this study introduces an adaptive predictor-
corrector (APC) scheme that uses Gauss’s forward interpolation to better approximate the de-
layed term. What sets this method apart is the way it combines the structure of the APC scheme
with Gauss’s forward interpolation to solve the single-pantograph time-delay problem described
in Eq. (1). Furthermore, the paper provides a thorough analysis of the convergence and stability
of the method.

The following is the structure of the paper. The mathematical formulation of the suggested
APC scheme is explained in Section 2, which is followed by both convergence and stability
analysis. Sections 3 and 4 respectively discuss the application of Gauss’s forward interpola-
tion in addressing the characteristics of single-pantograph time delays, and present a systematic
computational algorithm of the APC scheme designed to solve pantograph delay differential
equations. Next, the applicability and efficiency of the method are tested through some numeri-
cal problems in Section 5. In Section 6, the findings are further examined, and in Section 7, the
study is finally concluded.

2. Numerical Method of Adaptive Predictor-Corrector Scheme

The APC scheme, which was developed using Newton’s forward interpolation and modified for
proportional delay terms in pantograph equations, is introduced in this section.

2.1. Formulation of APC scheme

Let [a, b] be the interval over which the solution of initial value problem

du

dt
= f(t, u), u(t0) = u0. (3)

For this, the interval [a, b] is divided into n equal sub-intervals such that

ti = t0 + ih, i = 1, 2, 3, ..., n, (4)

where h is the step size. The Newton’s forward interpolation formula is

up = u0 + p∆u0 +
p(p− 1)

2!
∆2u0 +

p(p− 1)(p− 2)

3!
∆3u0 + ..., (5)

where p = t−t0
h . For u′ = f(t, u), the above formula takes the following form

u′ = u′0 + p∆u′0 +
p(p− 1)

2!
∆2u′0 +

p(p− 1)(p− 2)

3!
∆3u′0 + ... (6)

To identify u4 = u(t0 + 4h), Eq. (6) can be integrated with respect to t as follows
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∫ t0+4h

t0

u′ dt =

∫ t0+4h

t0

[
u′0 + p∆u′0 +

p2 − p

2!
∆2u′0 +

p3 − 3p2 + 2p

3!
∆3u′0 + ...

]
dt. (7)

As p = t−t0
h which implies that dp = 1

hdt, and dt = hdp. Note that, when t approaching to t0,
p becomes 0, and when t approaching to t0 + 4h, p becomes 4. Hence, Eq. (7) has the form:

[u]t0+4h
t0

= h

∫ 4

0

[
u′0 + p∆u′0 +

p2 − p

2!
∆2u′0 +

p3 − 3p2 + 2p

3!
∆3u′0 + ...

]
dp. (8)

Then, we obtained

u4−u0 = h

[
pu′0 +

p2

2
∆u′0 +

1

2!

(
p3

3
− p2

2

)
∆2u′0 +

1

3!

(
p4

4
− p3 + p2

)
∆3u′0 + ...

]4
0

. (9)

Thus,

u4 = u0 + h

[
4u′0 + 8∆u′0 +

1

2!

(
40

3

)
∆2u′0 +

8

3
∆3u′0 + ...

]
. (10)

Neglecting fourth and higher order differences, then

u4 = u0+h

[
4u′0 + 8(u′1 − u′0) +

20

3
(u′2 − 2u′1 + u′0) +

8

3
(u′3 − 3u′2 + 3u′1 − u′0)

]
. (11)

By simplifying the equation, then we have

u4 = u0 + h

[
8

3
u′3 −

4

3
u′2 +

8

3
u′1

]
. (12)

In general, Eq. (12) can be written as

upk+1 = uk−3 +
4h

3

[
2u′k − u′k−1 + 2u′k−2

]
. (13)

The formula in Eq. (13) is known as adaptive predictor formula. Next, the corrector formula is
derived similarly to the predictor by first integrating Eq. (5) with respect to t over [t0, t0 + 2h],

∫ t0+2h

t0

u′ dt =

∫ 2

0

[
u′0 + p∆u′0 +

p2 − p

2!
∆2u′0 +

p3 − 3p2 + 2p

3!
∆3u′0 + ...

]
dp. (14)

Then, by evaluating the integral, gives

u2 − u0 = h

[
pu′0 +

p2

2
∆u′0 +

1

2!

(
p3

3
− p2

2

)
∆2u′0+

1

3!

(
p4

4
− p3 + p2

)
∆3u′0 + ...

]2
0

.

(15)
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Neglecting fourth and higher order differences, produces

u2 − u0 = h

[
pu′0 +

p2

2
∆u′0 +

1

2!

(
p3

3
− p2

2

)
∆2u′0+

1

3!

(
p4

4
− p3 + p2

)
∆3u′0 + ...

]2
0

.

(16)

Following that,

u2 − u0 = h

[
2u′0 + 2∆u′0 +

1

2!

(
2

3

)
∆2u′0 +

1

3!
(0)∆3u′0

]
. (17)

u2 = u0 + h

[
2u′0 + 2(u′1 − u′0) +

1

3
(u′2 − 2u′1 + u′0)

]
. (18)

Therefore, when the equation is simplified, we get

u2 = u0 +
h

3
[u′2 + 4u′1 + u′0]. (19)

In general, Eq. (19) can be written as

uck+1 = uk−1 +
h

3
[u′k+1 + 4u′k + u′k−1], (20)

which is known as adaptive corrector formula.

2.2. Convergence analysis of the method

In this particular section, the method’s order and convergence are studied. The definition pro-
vided by Darus et al. (2023) was utilized.

Definition 2.1. If C0 = C1 = ... = Cm = 0 and Cm+1 ̸= 0, then the linear multistep technique
is considered to be of order m.

Definition 2.2. A linear k-step method is considered consistent if and only if its order of accu-
racy satisfies |m| ≥ 1.

Definition 2.3. If multiple zeroes z satisfy |ρ(z)| < 1 and the first characteristic polynomial,
|ρ(z)| ≤ 1, then a linear multistep method is considered zero stable. The first characteristic
polynomial is defined as

ρ(z) = α0 + α1z + α2z
2 + ...+ αkz

k, (21)

where, αj are the coefficients of the linear multistep method.

The formula beneath is utilized to identify the method’s order

k∑
j=0

[αju(t+ jh)− hβju
′(t+ jh)] = Cmum +O(hm+1), (22)
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where, m is the order of the linear multistep method and O(hm+1) is the local truncation error.
The constant Cm can be calculated using the following formula

Cm =

k∑
j=0

[
jmαj

m!
− jm−1βj

(m− 1)!

]
, m = 0, 1, 2, . . . (23)

where, k is the step, α and β are the coefficients obtained from the proposed method. Cm+1 is
referred as the error constant of the method. The coefficients is calculated as follows:

C0 =

k∑
j=0

αj = 0,

C1 =

k∑
j=0

(jαj − βj) = 0,

C2 =

k∑
j=0

(
j2αj

2!
− jβj

)
= 0,

C3 =

k∑
j=0

(
j3αj

3!
− j2βj

2!

)
= 0,

C4 =

k∑
j=0

(
j4αj

4!
− j3βj

3!

)
= 0,

C5 =

k∑
j=0

(
j5αj

5!
− j4βj

4!

)
= − 1

90
.

(24)

Therefore, this method is of order 4 with error constant C5 = − 1
90 and also said to be consistent

since it satisfies the Definition 3.2.

In order to verify the zero stable features for the suggested approach, which is based on Eq.
(20), the characteristic polynomial is

ρ(z) = α0 + α1z + α2z
2 = −1 + z2 = (z + 1)(z − 1), (25)

which has two zeros, z = −1 and z = 1. These both have magnitude less than or equal to 1 and
multiples zeros satisfy the condition in Definition 3.3. Thus, the proposed method is said to be
zero stable.

Definition 2.4. The method appears to be convergent if it is zero stable and consistent.

We have demonstrated that the proposed method is zero stable and consistent, hence proving its
convergence.

2.3. Stability of the method

Stability is a fundamental property of numerical methods for delay differential equations, en-
suring that solutions remain bounded under small perturbations (Lambert 1991; Hairer et al.
1993). While accuracy concerns the closeness to the exact solution, stability guarantees re-
liable long-term behavior (Rihan 2021). In delay equations, where current values depend on
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past states, instability may occur even for small or vanishing lags if the method lacks sufficient
stability.

The concept of P-stability, introduced by Lambert (1991), characterizes methods that remain
stable for all negative real parameters and any positive delay. Its relevance has been further high-
lighted in applied settings (Rihan 2021; Aziz et al. 2014), particularly for problems involving
small or vanishing lags. To analyze the stability of the proposed APC scheme, we consider the
standard linear test equation as

u′(t) = λu(t) + µu(t− τ), t ≥ t0,

u(t) = ϕ(t), −τ ≤ t ≤ t0,
(26)

where λ and µ are real numbers, τ is the delay term such as τ = rh is a constant step size such
that tn = t0 + nh and r ∈ Z+.
Applying Eq. (20) to to this test equation leads to:

uk+1(t)− uk−1(t) =
h

3
[λuk+1(t) + µuk+1(t− τ) + 4[λuk(t) + µuk(t− τ)]+

λuk−1(t) + µuk−1(t− τ)].
(27)

Rearranging Eq. (27) to be equal to zero and let H1 = hλ and H2 = hµ, then we obtained

uk+1(t)−H1uk+1(t)− uk−1(t)−
1

3
H1uk−1(t)−

4

3
H1uk(t)

−1

3
H2uk+1(t− τ)− 4

3
H2uk(t− τ)− 1

3
H2uk−1(t− τ) = 0.

(28)

From this, the characteristic polynomial π(t) is derived as

π(t) =

(
1− H1

3

)
t2+m−

(
1 +

1

3
H1

)
tm− 4

3
H1t

1+m−
(
1

3
t2 − 4

3
t− 1

3

)
H2 = 0. (29)

Figure 1: P-stability region for adaptive predictor-corrector method
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The P-stability region of the proposed APC scheme in the (H1, H2) plane is displayed in
Figure 1, where H1 = hλ and H2 = hµ represent the scaled values of the non-delay and delay
terms, respectively. This region helps us understand where the numerical method stays stable
over time. From the figure, we can clearly see that the method is stable for all negative values of
H1 (which corresponds to λ < 0) and for any positive delay term H2, which meets the formal
definition of P-stability. This is especially important when solving delay differential equations,
where delays can easily cause instability. The shape of the stability region is wide which in-
dicates that the method can handle both small and vanishing lags without breaking down or
producing erratic results. In other words, the figure confirms that the APC method remains reli-
able and accurate even in challenging scenarios involving proportional or vanishing lags. This
strong and consistent stability makes the method highly suitable for solving pantograph-type
delay differential equations.

3. Gauss’s Forward Interpolation Strategy

This section explains how the proposed method handles different types of delays that can appear
in single-pantograph delay differential equations. In particular, delay values may either fall
exactly on a previously computed time point or between two time points. These situations are
commonly referred to as vanishing lag and small lag, respectively, as discussed in (Aziz &
Majid 2013).

To accurately approximate delayed terms such as u(αt), especially when the delay does not
align with existing mesh points, Gauss’s forward interpolation is applied. This interpolation
method improves accuracy by using both even and odd forward differences, making it suitable
for the proportional and vanishing lags common in pantograph-type equations. Two main cases
are considered when estimating the delayed term:

3.1. Case 1: Delay time fall exactly at tn

Definition 3.1. Vanishing lag is the circumstance where the time delay vanishes out because it
falls exactly at one of the preceding points.

A vanishing lag occurs when the delay term, αt coincides exactly with one of the computed time
steps, such as αt = tn. In this situation, the delayed value u(αt) can be directly substituted
using the previously calculated solution value, with no interpolation required. For instance, in
Problem 1 of Section 5, we have

u′(t) =
1

2
exp

(
1

2
t

)
u

(
1

2
t

)
+

1

2
u(t), (30)

u(0) = 1, 0 ≤ t ≤ 1. (31)

From Eq. (30), it can be seen that there may exist a vanishing lag in the pantograph delay as
( t2) → 0 where the time delay will tend to u(12(0)) = u(0) = 1 = t0. Therefore, the technique
of allocating the value of earlier phases will be considered in order to handle this characteristic.

3.2. Case 2: Delay time fall in the range [tn−1, tn]

In other scenarios, when the delay lies between two known time steps (e.g., αt ∈ [tn−1, tn]), the
Gauss’s forward interpolation is used to approximate the delayed value based on nearby known
values. The use of up to ten previous points in the interpolation process supports accurate and
stable results when solving equations with proportional delay. Consider the following example:
Eq. (30) with the current time step t9 = 0.009 for h = 0.001, where u(12(0.009)) has a
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delay term of u(0.0045). It can be observed that the delay is currently within the range of
[0.004, 0.005]. Thus, ten discrete data sets will be selected to be applied in the Gauss’s forward
interpolation formula as

uq = u0 + q∆u0 +
q(q − 1)

2!
.∆2u−1 +

(q + 1)q(q − 1)

(3!)
.∆3u−1

+
(q + 1)q(q − 1)(q − 2)

4!
.∆4u−2 + ...,

(32)

where

q =
t− t0
h

.

Incorporated within the APC scheme, this interpolation technique plays an important role in
preserving numerical accuracy when solving delay differential equations.

4. Computational Algorithm of APC Scheme

The following algorithm provides an outline of the means by which the APC scheme is imple-
mented. We begin with an initial-stage approximation to estimate the starting values, followed
by delay approximation using Gauss’s forward interpolation, and solve the remaining points
using the APC scheme.

Algorithm 1: Algorithm of APC Scheme
Input: Step size h, initial value u0, delay ratio q, final time b
Output: Numerical solution uk for tk ∈ [0, b]

1 /* Initialization */
2 Set t0 = 0, compute N = b

h ;
3 Set u0 = u(t0);
4 for i = 0 to 2 do
5 ui+1 = ui + h · f(ti, ui,ApproxDelay(qti));

6 /* APC Iteration */
7 for k = 3 to N − 1 do
8 fk = f(tk, uk,ApproxDelay(qtk));
9 fk−1 = f(tk−1, uk−1,ApproxDelay(qtk−1));

10 fk−2 = f(tk−2, uk−2,ApproxDelay(qtk−2));
11 /* Predictor */
12 u

(p)
k+1 = uk−3 +

4h
3 (2fk − fk−1 + 2fk−2);

13 /* Corrector */
14 uck+1 = uk−1 +

h
3 (f

(p)
k+1 + 4fk + fk−1);

15 f c
k+1 = f(tk+1, u

c
k+1,ApproxDelay(qtk+1));

16 Subroutine: ApproxDelay(qt)
17 if qt = tj then
18 return uj ;
19 else if qt ∈ [tj , tj+1] then
20 Approximate u(qt) using Gauss’s forward interpolation:
21 u(qt) ≈ u0 + q∆u0 +

q(q−1)
2! ∆2u−1 +

(q+1)q(q−1)
3! ∆3u−1 + · · ·
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5. Numerical Results

In this section, four tested single-pantograph time delays were taken for consideration in order
to verify the feasibility and effectiveness of the adaptive predictor-corrector (APC) scheme.
The step size, h = 10−3, with the initial condition, u0 given in each problem are used in
the solution. The initial values u1, u2, and u3 are determined using a preliminary numerical
approach, followed by the application of the APC scheme from u4 onwards throughout the
interval.

For each problem, the results are presented in terms of the relative error (RE) at selected
time points over the interval [0, 1]. These are compared with the fourth-order Adams-Bashforth-
Moulton (ABM4) method to assess the performance. The results in Tables 1 - 4 and Figures 2 -
5 clearly demonstrate the improvement in accuracy achieved by the APC scheme, particularly
in scenarios involving vanishing or small lags in the delay terms.

In the tables, the following terminologies are used: t represents time, Exact refers to the exact
solution value, RE(APC) indicates the relative error of the adaptive predictor-corrector, and
RE(ABM4) denotes the relative error of the fourth-order Adams-Bashforth-Moulton method.
Additionally, the notation 2.3671E-10 stands for 2.3671 x 10−10.

Problem 1 Rihan (2024)

u′(t) =
1

2
exp

(
1

2
t

)
u

(
1

2
t

)
+

1

2
u(t), 0 ≤ t ≤ 1,

u(0) = 1.

Exact solution: u(t) = exp(t).

Table 1: Numerical results of Problem 1

t Exact RE(APC) RE(ABM4)

0.1 1.105170918 2.3671E-10 5.4866E-09
0.2 1.221402758 4.7742E-10 1.1501E-08
0.3 1.349858808 7.1236E-10 1.7388E-08
0.4 1.491824698 9.4173E-10 2.3126E-08
0.5 1.648721271 1.1657E-09 2.8730E-08
0.6 1.822118800 1.3846E-09 3.4203E-08
0.7 2.013752707 1.5984E-09 3.9551E-08
0.8 2.225540928 1.8074E-09 4.4779E-08
0.9 2.459603111 2.0117E-09 4.9890E-08
1.0 2.718281828 2.2116E-09 6.1757E-08

Problem 2 Muroya et al. (2003)

u′(t) = −u(t) +
1

4
u

(
1

2
t

)
− 1

4
exp

(
−1

2
t

)
, 0 ≤ t ≤ 1,

u(0) = 1.

Exact solution: u(t) = exp(−t).
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Figure 2: Relative error of APC and ABM4 methods for Problem 1

Table 2: Numerical results of Problem 2

t Exact RE(APC) RE(ABM4)

0.1 0.904837418 1.3888E-10 4.0263E-09
0.2 0.818730753 2.7607E-10 7.4813E-09
0.3 0.740818221 4.2214E-10 1.1161E-08
0.4 0.670320046 5.7771E-10 1.5081E-08
0.5 0.606530660 7.4342E-10 1.9257E-08
0.6 0.548811636 9.1999E-10 2.3708E-08
0.7 0.496585304 1.1082E-09 2.8453E-08
0.8 0.449328964 1.3088E-09 3.3513E-08
0.9 0.406569660 1.5226E-09 3.8910E-08
1.0 0.367879441 1.7507E-09 4.4667E-08

Figure 3: Relative error of APC and ABM4 methods for Problem 2
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Problem 3 Ghomanjani & Shateyi (2020)

u′(t) = −5

4
exp

(
−1

4
t

)
u

(
4

5
t

)
, 0 ≤ t ≤ 1,

u(0) = 1.

Exact solution: u(t) = exp(−1.25t).

Table 3: Numerical results of Problem 3

t Exact RE(APC) RE(ABM4)

0.1 0.882496903 1.2487E-10 1.5679E-08
0.2 0.778800783 2.5457E-10 5.3525E-08
0.3 0.687289279 3.8771E-10 1.3992E-07
0.4 0.606530660 5.2444E-10 3.2408E-07
0.5 0.535261429 6.6495E-10 5.2711E-07
0.6 0.472366553 8.0941E-10 9.2147E-07
0.7 0.416862020 9.5803E-10 2.6846E-06
0.8 0.367879441 1.1110E-09 3.5629E-06
0.9 0.324652467 1.2686E-09 4.6463E-06
1.0 0.286504797 1.4311E-09 6.4812E-06

Figure 4: Relative error of APC and ABM4 methods for Problem 3

Problem 4 Doha et al. (2014)

u′(t) + u(t)− 1

10
u

(
1

5
t

)
= − 1

10
exp

(
−1

5
t

)
, 0 ≤ t ≤ 1,

u(0) = 1.

Exact solution: u(t) = exp(−t).
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Table 4: Numerical results of Problem 4

t Exact RE(APC) RE(ABM4)

0.1 0.904837418 3.0598E-10 1.8485E-09
0.2 0.818730753 5.2907E-10 4.0845E-09
0.3 0.740818221 7.7094E-10 7.5210E-09
0.4 0.670320046 1.0332E-09 2.5707E-08
0.5 0.606530660 1.3175E-09 5.6460E-08
0.6 0.548811636 1.6257E-09 1.9639E-07
0.7 0.496585304 1.9598E-09 3.9280E-07
0.8 0.449328964 2.3219E-09 7.6261E-07
0.9 0.406569660 2.7145E-09 8.7072E-07
1.0 0.367879441 3.1399E-09 9.3679E-07

Figure 5: Relative error of APC and ABM4 methods for Problem 4

6. Discussion

Four tested problems of single-pantograph time delay were numerically solved by using adap-
tive predictor-corrector scheme with constant step size. Gauss’s forward interpolation algorithm
is utilized to assess the delay term found in the equation. This is because this type of interpo-
lation is trivial to implement in the delay part of equations and seems to achieve the required
precision based on the results obtained.

Tables 1 - 4 display a comparison between the exact solution as well as the relative error at
each point, t, for solving single-pantograph time delay differential equations at constant step
size, h = 10−3 for Problems 1 - 4 respectively. From the obtained results in Table 1 - 4, we can
see that the adaptive predictor-corrector method obtained superior maximum value for relative
errors which is the estimated significant digits is up to 10−10 for all problems.

Figures 2 - 5 further illustrate the comparative performance of both methods across all test
problems. The APC scheme exhibits a steeper decline in RE over time, highlighting its faster
convergence rate. In contrast, the ABM4 method shows a more gradual or even stagnant error
reduction, particularly in problems where delay terms fall within intermediate mesh intervals.
This demonstrates that the APC method not only achieves higher precision but also maintains
numerical stability in challenging delay configurations.
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7. Conclusions

In this study, we have discussed the application of adaptive predictor-corrector scheme with
constant step size for solving a class of single-pantograph time delay differential equations.
Note that, the strategy of approximating the pantograph delay using Gauss’s forward interpola-
tion formula provides a good approximation value, which results in an acceptable small value
of error when compared to an exact solution.

The convergence analysis of the proposed method is also presented which shows that the
method is converge to the exact solution. Thus, we can conclude that the Gauss’s forward in-
terpolation formula combined with adaptive predictor-corrector scheme can effectively handle
the single-pantograph time delay problem. The current analysis’s capacity to solve a single
pantograph-type time delay might merit more in-depth future research on other classes of mul-
tiple delay pantograph equations.
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