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ABSTRACT

Signcryption is a modern cryptographic technique that merges the functionalities of digital sig-
nature and encryption into a single logical step, providing both confidentiality and authenti-
cation more efficiently than traditional methods. With the increasing demand for secure and
lightweight communication in mobile and Internet of Things (IoT) environments, the devel-
opment of efficient signcryption protocols has become critical. This paper proposes a novel
elliptic curve-based signcryption scheme that is exclusively founded on the hardness of the
Elliptic Curve Discrete Logarithm Problem (ECDLP), eliminating the use of modular expo-
nentiation and pairing operations, which are computationally expensive in resource-constrained
platforms. The proposed scheme is composed of five main phases: initialization, partial private
key extraction, user key generation, signcryption, and unsigncryption. Formal analysis confirms
that it satisfies essential security properties, including confidentiality, integrity, unforgeability,
non-repudiation, forward secrecy, and public verifiability. These properties are achieved under
standard cryptographic assumptions without compromising efficiency. Performance evaluation
was conducted through comparative analysis and runtime testing. The results demonstrate that
the proposed scheme achieves comparable or improved computational efficiency relative to sev-
eral recent elliptic curve-based schemes, particularly the lightweight signcryption protocol. In
conclusion, this study presents a secure, scalable, and implementation-friendly signcryption
solution that aligns with the cryptographic requirements of modern digital communication, of-
fering a promising direction for secure transactions in IoT ecosystems, mobile applications, and
embedded systems.
Keywords: elliptic curve signcryption; elliptic curve discrete logarithm problem; lightweight
cryptography; secure communication protocol

ABSTRAK

Tandatangan-penyulitan ialah satu teknik kriptografi moden yang menggabungkan fungsi tan-
datangan digital dan penyulitan dalam satu langkah logik, sekali gus menyediakan kerahsiaan
dan pengesahan dengan lebih cekap berbanding kaedah tradisional. Dengan peningkatan keper-
luan terhadap komunikasi yang selamat dan ringan dalam persekitaran mudah alih serta Internet
Benda (IoT), pembangunan protokol tandatangan-penyulitan yang cekap menjadi semakin pent-
ing. Kajian ini mencadangkan satu skema tandatangan-penyulitan baharu berasaskan lengkung
eliptik yang dibina sepenuhnya berasaskan kesukaran Masalah Logaritma Diskret Lengkung
Eliptik (ECDLP), tanpa menggunakan eksponen modular mahupun operasi berpasangan yang
lazimnya mahal dari segi pengiraan dalam platform sumber terhad. Skema yang dicadangkan
terdiri daripada lima fasa utama: inisialisasi, pengekstrakan kunci persendirian separa, pen-
janaan kunci pengguna, tandatangan-penyulitan, dan penyahsulitan. Analisis formal menge-
sahkan bahawa skema ini memenuhi sifat keselamatan utama termasuk kerahsiaan, integriti,
ketidakbolehpalsuan, nir-penyakalan, kerahsiaan ke hadapan dan kebolehan pengesahan awam.
Semua ciri keselamatan ini dicapai berdasarkan andaian kriptografi standard tanpa menjejaskan
kecekapan. Penilaian prestasi telah dijalankan melalui analisis perbandingan dan ujian masa
larian. Hasil kajian menunjukkan bahawa skema yang dicadangkan mencapai kecekapan pen-
giraan yang setara atau lebih baik berbanding beberapa skema terkini berasaskan lengkung elip-
tik, terutamanya protokol signcryption ringan. Kesimpulannya, kajian ini memperkenalkan satu
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penyelesaian signcryption yang selamat, berskala, dan mesra pelaksanaan selaras dengan keper-
luan kriptografi komunikasi digital moden, khususnya untuk transaksi selamat dalam ekosistem
IoT, aplikasi mudah alih, dan sistem terbenam.

Kata kunci: tandatangan-penyulitan lengkung eliptik; masalah logaritma diskret lengkung elip-
tik; kriptografi ringan; protocol komunikasi selamat

1. Introduction

Signcryption is a cryptographic technique that merges the functionalities of digital signature
and encryption into a single operation. This concept was introduced by Zheng (1997), who
demonstrated that combining these two cryptographic primitives into one step can significantly
reduce computational costs and communication overhead compared to the traditional “sign-
then-encrypt” paradigm. In this merged design, signcryption simultaneously provides both
confidentiality and authenticity, offering a practical solution for secure digital communication.

Based on Zheng’s foundational work, the development of signcryption has progressed to im-
prove its efficiency, security and applicability, particularly through the adoption of elliptic curve
cryptography (ECC). The idea of using elliptic curves in cryptographic systems was indepen-
dently proposed by Miller (1986) and Koblitz (1987), who recognized the potential of elliptic
curves over finite fields for constructing secure public key primitives (Miller 1986; Koblitz
1987).

ECC offers significantly enhanced security per bit and reduced key sizes compared to tradi-
tional systems based on integer factorization or discrete logarithm problems. These advantages
make ECC especially appealing for resource-constrained platforms such as mobile devices, em-
bedded systems, and Internet of Things (IoT) applications. Over time, the cryptographic com-
munity has built upon Miller and Koblitz’s foundation to develop a range of elliptic curve-based
schemes, including ECDSA for digital signatures and ECC-based signcryption protocols. The
latter now serve as efficient alternatives to traditional “sign-then-encrypt” approaches, offering
strong security guarantees with lower computational and communication overhead.

In parallel with the development of elliptic curve cryptography, the concept of message re-
covery in signature schemes, where the original message is embedded within the signature and
later recovered during verification, was introduced by Nyberg and Rueppel (1996). Their work
on digital signatures based on the discrete logarithm problem with message recovery marked a
significant advancement by reducing communication costs and enabling more compact crypto-
graphic protocols (Nyberg & Rueppel 1996).

The original elliptic curve-based signcryption scheme was proposed by Zheng and Imai
(1998). Their model removed the necessity for modular exponentiation, utilizing elliptic curve
scalar multiplication to accomplish encryption and digital signing in one compact procedure.
However, the proposed scheme does not provide forward secrecy and public verifiability. Hwang
et al. (2005) improved ECC-based signcryption by integrating forward secrecy, which safe-
guards previous messages from compromise in the event of long-term key exposure. Nonethe-
less, their research did not include thorough empirical performance validation.

Toorani and Beheshti (2009) further advanced ECC signcryption by emphasizing public
verifiability and session key derivation without requiring pairing operations. Their scheme
strengthened the security model while maintaining lightweight operations. More recent de-
velopments have focused on adapting ECC signcryption to mobile and cloud environments.
For instance, Kumar and Gupta (2019) proposed an identity-based signcryption protocol using
ECC that was optimized for low-power IoT devices. Their work emphasized authentication and
confidentiality but relied partially on modular operations, which limited its efficiency.

Tsai and Su (2017) developed an elliptic curve-based blind signcryption scheme aimed at
efficiently processing multiple digital documents. The scheme uses a blinding mechanism to

300



A New Signcryption Scheme Using Elliptic Curve Discrete Logarithm Problem

protect sender anonymity and prevent traceability. While it offers computational efficiency and
blindness, it lacks forward secrecy, leakage resilience, and certificateless deployment, which
are increasingly important for modern mobile and IoT applications.

Zhang et al. (2022) proposed a lightweight ECC signcryption scheme designed to mini-
mize overall computation and enhance message integrity, especially in edge computing en-
vironments. In their study, Bashir and Ali (2019) identified weaknesses in blind ECC sign-
cryption models and introduced a more efficient framework that maintains unforgeability and
integrity. Recently, various schemes have been developed, including those by Tsai et al. (2022),
Ho et al. (2024), and Ricci et al. (2021), focusing on improvements like leakage resilience,
group anonymity, and proxy delegation in the ECC signcryption framework.

Despite these advances, many existing ECC signcryption schemes still incorporate modular
exponentiation, pairing-based computations, or rely on hybrid hardness assumptions, thereby
introducing unnecessary complexity. For example, Tsai and Su (2017) proposed an ECC-based
blind signcryption scheme that combines elliptic curve operations with blinding mechanisms
and symmetric encryption, relying on multiple intertwined cryptographic primitives to achieve
sender anonymity, confidentiality, and untraceability. Moreover, some schemes do not fully
satisfy modern security requirements such as forward secrecy, non-repudiation, and public ver-
ifiability in a provable way, thus limiting their practicality in lightweight and constrained envi-
ronments.

This paper proposes an enhanced elliptic curve signcryption scheme that relies solely on the
ECDLP, addressing the identified challenges. The proposed design completely removes mod-
ular exponentiation, relying solely on point addition and scalar multiplication within elliptic
curves. It meets all essential cryptographic objectives, which are confidentiality, integrity, au-
thenticity, non-repudiation, unforgeability, and forward secrecy, while reducing computational
overhead. This renders it especially appropriate for real-time applications in IoT, mobile net-
works, and embedded platforms. The comparative analysis demonstrates that the proposed
scheme provides similar or better security coverage while significantly reducing runtime costs
in comparison to several benchmark ECC-based signcryption protocols.

2. Preliminaries

This section outlines the fundamental mathematical structures, cryptographic primitives, and
security properties that form the basis of the proposed signcryption scheme in line with the
foundational principles outlined by Mogollon (2007).

2.1. Elliptic Curve Discrete Logarithm Problem (ECDLP)

Definition 2.1 (ECDLP). Given an elliptic curve E(Fq) and two points P and Q = d × P on
the curve, the elliptic curve discrete logarithm problem is to determine the scalar d ∈ Z∗

p.

The difficulty of solving this problem forms the basis of ECC’s security (Cheng et al. 2020).

2.2. Definition and Correctness of Signcryption

A signcryption scheme is a cryptographic construct that integrates the functionalities of digital
signature and encryption into a single operation. It is designed to provide both confidentiality
and authenticity more efficiently than the traditional “sign-then-encrypt” paradigm.

Definition 2.2 (Signcryption Scheme (Zheng 1997)). Given the key space K, message space
M, and signcryption space S, for any sender s and receiver r. A signcryption scheme is defined
by a tuple of four polynomial-time algorithms SC=(initialization, key generation, signcryption,
unsigncryption):
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(i) Initialization Init(1λ) → params: Outputs public system parameters based on the secu-
rity parameter λ, including elliptic curve settings, hash functions, and symmetric encryp-
tion schemes.

(ii) Key Generation KeyGen(params) → (pub, pvt): Generates a user key pair consisting
of a private key pvt and a public key pub.

(iii) Signcrypt Signcrypt(m, pubr, pvts) → σ: Given a message m, receiver’s public key
pubr, and sender’s private key pvts, outputs a ciphertext σ that encapsulates both encryp-
tion and signature.

(iv) Unsigncrypt Unsigncrypt(σ, pubs, pvtr) → m or ⊥: Given ciphertext σ, sender’s public
key pubs, and receiver’s private key pvtr, returns the original message m or failure ⊥ if
verification fails.

Definition 2.3 (Correctness). A signcryption scheme is correct if, for all key pairs (pubs, pvts),
(pubr, pvtr), and all messages m ∈ M, the following holds:

Unsigncrypt(Signcrypt(m,Pubr, Pvts), Pubs, Pvtr) = m (1)

This guarantees that a message encrypted and signed by the sender can be correctly recov-
ered and verified by the intended receiver.

3. The Proposed Signcryption Scheme

This section introduces a lightweight signcryption scheme founded on elliptic curve cryptogra-
phy, specifically designed to provide strong cryptographic guarantees while avoiding computa-
tionally intensive operations such as modular exponentiation. The scheme operates exclusively
on elliptic curve primitives, namely, point addition and scalar multiplication, and achieves core
security objectives based on the intractability of the Elliptic Curve Discrete Logarithm Prob-
lem (ECDLP). It is structured into four sequential phases: initialization, key generation, sign-
cryption, and unsigncryption. In contrast to generalized signcryption frameworks that support
encryption-only, signature-only, or combined modes (Wang et al. 2010), the proposed scheme is
dedicated solely to integrated signcryption, thereby reducing structural overhead and enhancing
runtime efficiency for secure real-time communication.

Previous enhancements to signcryption protocols have explored certificate-based and certifi-
cateless frameworks to address public key replacement and authentication without full reliance
on traditional public key infrastructures. For example, Lu and Li (2014) proposed a certificate-
based scheme that improves resistance to insider threats and key substitution attacks, albeit at
the cost of increased processing due to certificate handling. On the other hand, Toradmalle
et al. (2019) presented a lightweight, certificateless model well-suited to IoT environments,
though it still introduces complexity through identity management. The proposed scheme de-
parts from these approaches by eliminating certificate dependencies entirely, relying instead on
elliptic curve operations and ephemeral session keys to ensure both cryptographic robustness
and deployment simplicity in resource-constrained platforms.

3.1. Construction

This section presents the construction of our certificateless elliptic curve signcryption scheme
SC = (initialization, partial private key extraction, user key generation, signcryption, unsign-
cryption).

The scheme adopts the certificateless public key model of Al-Riyami and Paterson (2003),
combining a partial private key issued by a trusted KGC with a user-chosen secret. This elim-
inates the need for certificates while avoiding key escrow, and enables lightweight ECC-based
signcryption without bilinear pairings.

(i) Phase 1: Initialization
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This phase is performed by the Key Generation Center (KGC) to initialize global param-
eters and system-wide cryptographic settings.

(a) Select a large prime number p and define the finite field GF(p).
(b) Choose an elliptic curve E(GF(p)) defined by the equation y2 = x3 + ax + b

mod p, where a, b ∈ GF(p), and 4a3 + 27b2 ̸≡ 0 mod p.
(c) Select a base point G ∈ E(GF(p)) of prime order q, where q is a large prime.
(d) Choose a master secret key sKGC ∈ Z∗

q , and compute the corresponding public key
PKGC = sKGC ×G.

(e) Two cryptographic hash functions are defined: H1 : {0, 1}∗ → Z∗
q , such as SHA-

256 used to map user identities to scalars, and Hk2
: {0, 1}∗ → Zq, used as a

keyed hash function such as HMAC-SHA-256 (National Institute of Standards and
Technology 2015) during the signcryption process.

(f) The public system parameters are then published as

params = (GP(p), E,G, q, PKGC, H1, Hk2
, Ek, Dk)

where Ek and Dk denote symmetric encryption and decryption algorithms such as
AES-256.

(ii) Phase 2: Partial Private Key Extraction
Given a user identity IDx, the Key Generation Center (KGC) executes the following
steps:

(a) Compute the hashed identity scalar: hx = H1(IDx) ∈ Z∗
q .

(b) Generate the user’s identity point: Qx = hx ×G ∈ GP(p).
(c) Derive the user’s partial private key: Dx = s × Qx, where s is the KGC’s master

secret.
(d) Send Dx securely to the user over an authenticated and confidential channel.

(iii) Phase 3: User Key Generation
Upon receiving the partial private key Dx, the user completes their key pair as follows:

(a) Choose a random secret value x ∈ Z∗
q .

(b) Compute the public key component: Px = x×G ∈ GP(p).
(c) Reconstruct the identity point: Qx = H1(IDx)×G.
(d) Set the full private key as SKx = (x,Dx) and the full public key as PKx =

(Px, Qx).

(iv) Phase 4: Signcryption
To signcrypt a message m to a receiver with identity IDr, the sender proceeds as follows:

(a) Select a random ephemeral scalar e ∈ Z∗
q and compute the ephemeral public key

J = e×G.
(b) Compute the recipient’s identity point Qr = H1(IDr)×G.
(c) Compute the session key as K = e× (Pr +Qr) = (k1, k2).
(d) Encrypt the message to obtain ciphertext c = Ek1

(m).
(e) Compute the hash value r = Hk2

(J∥m) ∈ Zq.
(f) Compute the sender’s identity point Qs = H1(IDs)×G.
(g) Compute the signature component S = r × (Ps +Qs).
(h) Output the signcryption tuple σ = (c, J, S).

(v) Phase 5: Unsigncryption
Upon receiving the signcryption tuple σ = (c, J, S), the receiver performs:

(a) Compute hr = H1(IDr) ∈ Zq and the identity point Qr = hr ×G.
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(b) Derive the session key: K = (xr + hr)× J = (k1, k2).
(c) Decrypt the ciphertext: m = Dk1

(c).
(d) Compute the hash value r = Hk2

(J ∥m).
(e) Recompute sender’s identity point: Qs = H1(IDs)×G.

(f) Verify the signature by checking whether S ?
= r × (Ps +Qs).

(g) If valid, accept m; otherwise, reject.

3.2. Correctness

The correctness of the scheme is shown by verifying that both parties derive the same session
key and the signature relation holds. Let Qs = H1(IDs) ·G, Qr = H1(IDr) ·G, and J = e ·G
for ephemeral scalar e ∈ Z∗

q . The sender computes the session key as:

K = e× (Pr +Qr) (2)

and the signature component as:

S = r × (Ps +Qs), where r = Hk2
(J∥m) (3)

The receiver computes:

K = (xr + hr)× J = e× (Pr +Qr) (4)

since hr = H1(IDr), and derives the same k1 to decrypt m. He/She then verifies:

S
?
= r × (Ps +Qs) (5)

As all values match, decryption and signature verification succeed, confirming correctness.

4. Security Analysis

This section analyzes the proposed signcryption scheme in terms of its ability to satisfy standard
cryptographic security properties. The scheme is evaluated against six core objectives: confi-
dentiality, unforgeability, integrity, non-repudiation, forward secrecy, and public verifiability,
including the certificate model. Two security models, which are indistinguishability under cho-
sen ciphertext attack (IND-CCA) and existential unforgeability under chosen message attack
(EUF-CMA) developed by Baek et al. (2007) used to test confidentiality and unforgeability,
respectively.

4.1. Confidentiality

The confidentiality of the proposed scheme is proven in the random oracle model under the
assumption that the Elliptic Curve Diffie-Hellman (ECDH) problem is hard.

Theorem 4.1. If there exists a probabilistic polynomial-time (PPT) adversary A who can break
the confidentiality of the scheme under adaptive chosen ciphertext attack (IND-CCA2) with non-
negligible advantage ε, then there exists a challenger C that can solve the ECDH problem with
non-negligible advantage.

Proof. Let C be given an ECDH instance: (G,A = a × G,B = b × G), and the goal is to
compute ab×G. C runs A as a subroutine and simulates the environment as follows:

Setup: The challenger generates public parameters and sets J∗ = A and Pr + Qr = B.
Thus, the session key becomes K∗ = a × B = ab × G. All other parameters are generated
honestly. Hash oracles H1, Hk2

, and symmetric encryption oracles are modeled as random
oracles.
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Phase 1: The adversary A is allowed to query:

(1) H1(IDi): Simulated with a uniformly random value and stored in a list.
(2) Hk2

(J∥m): Simulated similarly.
(3) Signcryption and Unsigncryption queries: Simulated honestly using known keys, except

when involving the challenge ciphertext.

Challenge: The adversary submits two messages m0,m1 of equal length. The challenger
flips a random bit b ∈ {0, 1}, computes c∗ = Ek1

(mb), where k1 = KDF1(K
∗), and sends

σ∗ = (c∗, J∗) to A.
Phase 2: A may continue to issue all queries, except for unsigncrypt queries on σ∗.
Guess: Finally, A outputs a guess b′. If b′ = b, then C outputs ab ·G = K∗.
Advantage: If A has non-negligible advantage in distinguishing m0,m1, then C solves the

ECDH problem with non-negligible advantage. Therefore, under the ECDH assumption, the
scheme is IND-CCA2 secure.

4.2. Unforgeability

The unforgeability of the proposed scheme is modeled using the standard EUF-CMA game.
Let A be a probabilistic polynomial-time (PPT) adversary who interacts with a challenger C
through a series of oracle queries.

Theorem 4.2. If a PPT adversary A can forge a valid signcryption σ∗ = (c∗, J∗, S∗) for a new
message m∗ and identity IDs without querying the signcryption oracle on (m∗, IDs), then C
can solve the ECDLP with non-negligible probability in the random oracle model.

Proof. Let the challenger C be given an ECDLP instance (G,Q = x×G), and aim to compute
x. C simulates the environment for adversary A as follows:

Setup: C sets Qs = Q as the target public key of the sender, with unknown secret key xs.
All other system parameters are generated honestly. Lists LH1

, LH2
, and LSC are initialized to

empty.
Oracle Queries:

(1) H1-queries: On input IDi, if (IDi, hi) exists in LH1
, return hi; else pick hi ∈ Z∗

q
uniformly at random, store and return it.

(2) H2-queries: On input (J,m), if tuple exists in LH2
, return stored value; else pick r ∈ Z∗

q ,
store and return it.

(3) Signcrypt queries: When queried on m, the challenger simulates (c, J, S) as follows:

J = e×G, r = Hk2
(J∥m), S = r × (Ps +Qs) (6)

even though C does not know xs, as only Ps = xsG is required in algebraic form.
(4) Unsigncrypt queries: These are simulated honestly unless they match the challenge

forgery.

Forgery: Eventually, A outputs a forgery σ∗ = (c∗, J∗, S∗) on message m∗ for identity
IDs, such that the verification equation:

S∗ ?
= r∗ × (Ps +Qs), r∗ = Hk2

(J∗∥m∗) (7)

holds and (m∗, IDs) was never queried.
Case Analysis:

• Case 1: r∗ was queried to H2. Since C knows r∗, S∗, Qs, it computes:

xs =
1

r∗
(S∗ − r∗ ×Qs)×G−1 (8)
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solving the ECDLP.
• Case 2: r∗ was never queried. Then success probability is negligible due to hash function

collision resistance.

Thus, any successful forgery under EUF-CMA implies solving the ECDLP.

4.3. Integrity

The proposed scheme guarantees that any modification to the ciphertext or message will be
detected during unsigncryption.

Theorem 4.3. The proposed scheme ensures message integrity: any modification of the ci-
phertext c, ephemeral key J , or the message m will result in the signature verification S =
r × (Ps +Qs) failing.

Proof. The integrity check is based on the equation S = r× (Ps+Qs), where r = Hk2
(J∥m).

If either J , m, or S is altered, then the recomputed value r′ = Hk2
(J ′∥m′) will differ from the

original r, unless a hash collision occurs.
Given the collision resistance of Hk2

, it is computationally infeasible for an adversary to
forge a valid (J ′,m′) such that the same r is produced. Therefore, any unauthorized change
will invalidate the signature equation, and the message will be rejected.

4.4. Non-repudiation

The proposed scheme ensures that the sender cannot deny having generated a valid signcrypted
message.

Theorem 4.4. The proposed scheme achieves non-repudiation: any recipient or external ver-
ifier can prove that a signcrypted message was generated by the sender with identity IDs,
assuming the collision resistance of H1 and Hk2

.

Proof. The signature is computed as S = r × (Ps + Qs), where Qs = H1(IDs) × G and
r = Hk2

(J∥m). Both Ps and Qs are linked to the sender’s identity IDs and long-term key. The
verifier can recompute r from J and m, and verify that:

S
?
= r × (Ps +Qs)

Given the collision resistance of the hash functions, only the legitimate sender with access to
xs can produce a valid S that satisfies this equation. Therefore, the sender is cryptographically
bound to the message and cannot repudiate it.

4.5. Forward secrecy

The proposed scheme provides forward secrecy of message confidentiality under the assump-
tion that the sender’s long-term private key is compromised after the session.

Theorem 4.5. The proposed scheme achieves forward secrecy: if the ephemeral scalar e ∈ Z∗
q

used in a signcryption session is not revealed, then compromising the sender’s long-term private
key xs does not allow an adversary to recover the session key K or decrypt the message m.

Proof. The session key is derived as K = e × (Pr + Qr), where e is a fresh random scalar
chosen independently for each session. The ephemeral public key J = e × G is exposed in
the ciphertext, but without knowing e, the adversary cannot compute K, assuming the hardness
of the Elliptic Curve Diffie-Hellman (ECDH) problem. Even if the adversary later obtains the
sender’s long-term key xs, it provides no advantage in computing K, since e is not derivable
from J without solving the ECDLP. Therefore, the confidentiality of previously signcrypted
messages remains preserved.
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4.6. Public verifiability

The proposed scheme allows any third party to verify the authenticity of a signcrypted message
using only public information.

Theorem 4.6. Given a valid signcryption tuple σ = (c, J, S), the receiver or any external
verifier can verify the origin of the message using the sender’s public key Ps, the identity point
Qs = H1(IDs)×G, and the reconstructed hash r = Hk2

(J∥m), by checking:

S
?
= r × (Ps +Qs)

Proof. All terms in the verification equation are publicly computable: Ps is published by the
sender, Qs is derived from the sender’s identity, J is part of the ciphertext, and m is recovered
after decryption. The hash r = Hk2

(J∥m) is reconstructed identically. Since the original
signature was generated as S = r× (Ps +Qs), this equation holds under honest execution. No
private or partial keys are required to validate S, thus satisfying public verifiability.

4.7. Certificate model

The proposed scheme operates within the certificateless public key cryptography (CL-PKC)
model as introduced by Al-Riyami and Paterson (2003), eliminating the need for traditional
digital certificates and central public key infrastructures (PKIs). In this model, the Key Gener-
ation Center (KGC) issues a partial private key Dx derived from a user’s identity IDx, while
the user selects an independent secret value x ∈ Z∗

q and computes a corresponding public key
component Px = x × G. The complete private key is SKx = (x,Dx), and the full public key
is PKx = (Px, Qx), where Qx = H1(IDx)×G is the identity-derived point.

This hybrid construction prevents key escrow since the KGC does not know the user’s full
private key, and at the same time, public key verification does not require digital certificates,
as the binding between IDx and PKx is embedded cryptographically via the hash function
H1. The verification of the signature S = r × (Ps + Qs) relies solely on the sender’s identity
and published public key components, with no need for certificate validation or revocation
mechanisms.

Therefore, the proposed scheme achieves certificateless security while maintaining effi-
ciency and removing the operational burden associated with managing certificates or deploying
centralized authorities.

The proposed scheme satisfies all standard security objectives of a robust signcryption proto-
col: correctness, confidentiality, integrity, unforgeability, non-repudiation, and forward secrecy,
as shown in Table 1.

5. Performance Analysis

An effective signcryption scheme must achieve strong cryptographic security while minimiz-
ing computational and communication costs, particularly in constrained environments such as
mobile networks and Internet of Things (IoT) devices. This section evaluates the performance
of the proposed scheme in terms of security feature coverage, computational complexity, and
runtime efficiency, and compares it with several benchmark elliptic curve-based signcryption
protocols, including Zheng and Imai (1998), Hwang et al. (2005), Tsai and Su (2017), Zhang
et al. (2022), and Bashir and Ali (2019).

5.1. Security feature comparison

Table 2 shows a comparison of security properties between the proposed scheme and several
notable elliptic curve-based signcryption protocols. The proposed scheme achieves compre-
hensive security coverage, including confidentiality, integrity, unforgeability, non-repudiation
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Table 1: Security goals, mechanisms, and assumptions in the proposed scheme

Security
Property

Enforcing Mechanism Security
Model

Underlying Assumption

Confidentiality AES encryption using key k1 = KDF1(K),
where K = e× (Pr +Qr).

IND-CCA2 Hardness of ECDH prob-
lem, random oracle model

Unforgeability Signature S = r × (Ps + Qs); only com-
putable with sender’s full private key.

EUF-CMA ECDLP hardness, colli-
sion resistance of Hk2

Integrity Integrity linked to r = Hk2(J∥m), and veri-
fied via signature equation S = r×(Ps+Qs).

Implicit Collision resistance of
keyed hash Hk2

Non-repudiation Signature binds m to Ps + Qs; verifiable by
any third party.

Implicit ECDLP + uniqueness of
EC point-to-key binding

Forward Secrecy Ephemeral scalar e ∈ Z∗
q used once per ses-

sion; J = e×G is public.
Implicit ECDLP prevents recovery

of e from J

Public
verifiability

Signature S = r× (Ps+Qs) verifiable using
only public keys and hash r = Hk2(J∥m).

Implicit ECC arithmetic soundness
+ public key binding

Certificate
Model

No certificates; key binding via Qx =

H1(IDx)×G and user’s secret x.
CL-PKC No CA or PKI needed; cer-

tificateless assumption
IND-CCA2: Indistinguishability under Adaptive Chosen Ciphertext Attack, EUF-CMA: Existential Unforgeability under
Chosen Message Attack, CL-PKC: Certificateless Public Key Cryptography.

(directly verifiable), forward secrecy, and public verifiability. In contrast, while Hwang et al.
(2005) provides similar security coverage, it is still based on a certificate-based model. Zhang
et al. (2022) offers strong security features but lacks public verifiability and depends on certifi-
cates, which can increase implementation overhead in dynamic or lightweight environments.

Schemes such as Zheng and Imai (1998) and Tsai and Su (2017) do not provide forward
secrecy or public verifiability, limiting their applicability in modern secure communication sys-
tems. Notably, the proposed scheme operates in a certificateless setting, eliminating the need
for certificate management while still achieving robust security goals. This makes it highly
suitable for deployment in mobile, IoT, and other resource-constrained environments.

Table 2: Comparison of security features across signcryption schemes

Signcryption Schemes Conf Int Unf NonR ForS PubV CertM
Our proposed scheme Yes Yes Yes Directly Yes Yes Certificateless
Zheng and Imai (1998) Yes Yes Yes Partially No No Certificate-

based
Hwang et al. (2005) Yes Yes Yes Directly Yes Yes Certificate-

based
Tsai and Su (2017) Yes Yes Yes Directly No No Certificate-

based
Bashir and Ali (2019) Yes Yes Yes Directly Yes No Certificate-

based
Zhang et al. (2022) Yes Yes Yes Directly Yes No Certificate-

based
Conf: Confidentiality, Int: Integrity, Unf: Unforgeability, NonR: Non-repudiation, ForS: Forward Secrecy, PubV: Public
Verifiability, CertM: Certificate Model.

5.2. Computational cost comparison

The proposed scheme is designed to avoid expensive operations such as modular exponentia-
tion and pairing operation. Instead, it relies entirely on elliptic curve scalar multiplication and
addition. Table 3 compares the number and type of cryptographic operations required during
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the signcryption and unsigncryption phases. Many pairing-based signcryption schemes rely on
libraries such as the PBC library (Lynn 2022), to implement bilinear maps for identity-based or
proxy-based functions. However, these operations are known to be computationally intensive,
particularly on constrained devices. Our scheme avoids such dependencies entirely, focusing
on scalar multiplication and point addition on elliptic curves to maximize efficiency.

Table 3: Comparison of computational cost per phase

Signcryption Schemes Enc Dec H EXP MI MA MM ECM ECA
Our proposed scheme Signcryption 1 0 1 0 0 0 1 3 1

Unsigncryption 0 1 1 0 0 0 0 3 1
Zheng and Imai (1998) Signcryption 1 0 2 0 1 1 0 1 0

Unsigncryption 0 1 2 0 0 0 2 2 1
Hwang et al. (2005) Signcryption 1 0 1 0 0 1 1 2 0

Unsigncryption 0 1 1 0 0 0 0 3 1
Tsai and Su (2017) Signcryption 1 0 0 0 0 0 0 5 0

Unsigncryption 0 1 0 0 0 0 0 4 4
Bashir and Ali (2019) Signcryption 1 0 2 1 0 2 0 3 1

Unsigncryption 0 1 0 0 0 0 1 2 0
Zhang et al. (2022) Signcryption 1 0 1 0 1 0 1 1 0

Unsigncryption 0 1 1 0 1 0 2 2 1
Enc: Encryption, Dec: Decryption, H: One-way or keyed one-way hash function, EXP: Modular exponentia-
tion, DIV: Modular inversion, MA: Modular addition, MM: Modular multiplication, ECM: Elliptic curve point
multiplication, ECA: Elliptic curve point addition

5.3. Runtime performance evaluation

For computational analysis, we use the primitive and cryptographic operation timing as shown
in Table 4. We used the experimental platform, which is Python in Windows 11 64-bit operating
system with an 11th-gen Intel(R) Core(TM) i7-1165G7 @ 2.80GHz 2.80 GHz processor and
8000 MB of RAM to measure the approximate running times of arithmetic and cryptographic
operations. Table 4 shows the approximate running time for the operations of elliptic curve point
multiplication TECM, elliptic curve point addition TECA, modular exponentiation TEXP, modular
addition TMA, modular multiplication TMM, hashing TH and symmetric encryption Tsym. We
used 100 iterations for each test to get more reliable results, balancing accuracy and runtime.
We need to select the appropriate key sizes, specifically the 3072-bit RSA key size (modular
exponentiation), to align with the security level of the 256-bit elliptic curves (Singh et al. 2016).
Modular multiplication and addition also use this key size to be consistent. The order of time
complexity found by Shohaimay and Ismail (2023) becomes TEXP ≫ TECM ≫ TECA ≫ Tsym ≫
TH after combining with modular exponentiationTEXP. As evident, modular exponentiation is
approximately 120 times slower than elliptic curve point addition, making its elimination a key
efficiency advantage.

5.4. Total computational time

The computational cost refers to the total time complexity associated with the operations exe-
cuted during signcryption and unsigncryption. As indicated in Table 5, TMA, TMM, TH and TECA
are disregarded due to their negligible values. The proposed scheme has a computational cost
of 6TECM+2Tsym and has a running time of approximately 0.202184 ms. The running time for
the proposed scheme is faster than Zhang et al. (2022), Bashir and Ali (2019), and Tsai and Su
(2017) which are 0.219414 ms, 3.051965 ms and 0.274676 ms, respectively. However, slightly
slower than Zheng and Imai (1998) and Hwang et al. (2005).
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Table 4: Approximate running times of arithmetic and cryptographic operations

Symbols Operation Arithmetic Mean (ms) Standard Deviation
(ms)

TECM Elliptic curve point
multiplication

0.024164 0.007812

TECA Elliptic curve point
addition

0.0002355 0.0000619

TEXP Modular
exponentiation

2.873945 0.315294

TMM Modular multiplication 0.001287 0.000226
TMA Modular addition 0.000691 0.000315
TMI Modular inversion 0.044861 0.006685
TH Hash (SHA-256) 0.001209 0.002215
Tsym Symmetry Encryption 0.0286 0.0173

Table 5: Computational cost for executed operations in the proposed scheme and other similar schemes

Signcryption Schemes Sender
Computational Cost

Receiver
Computational Cost

Running Time

Our proposed scheme 3TECM+1Tsym 3TECM+1Tsym ≈ 0.202184 ms
Zheng and Imai (1998) 2TMI+1TECM+1Tsym 2TECM+1Tsym ≈ 0.174553 ms

Hwang et al. (2005) 2TECM+1Tsym 3TECM+1Tsym ≈ 0.17802 ms
Tsai and Su (2017) 5TECM+1Tsym 4TECM+1Tsym ≈ 0.274676 ms

Bashir and Ali (2019) 3TECM+1Tsym+1TEXP 2TECM+1Tsym ≈ 3.051965 ms
Zhang et al. (2022) 1TECM+1TMI+1Tsym 2TECM+1TMI+1Tsym ≈ 0.219414 ms

TECM: Elliptic curve point multiplication operation, Tsym: Symmetric encryption/decryption operation, TMI: Modular inversion,
TEXP: Modular exponentiation.

The proposed scheme achieves a strong balance between robust security properties and high
computational efficiency. By eliminating modular exponentiation and relying solely on elliptic
curve arithmetic, it significantly reduces execution time while maintaining resistance to known
attacks. This makes it a strong candidate for lightweight secure communications in constrained
environments.

6. Conclusion

In this work, we have presented a lightweight elliptic curve signcryption scheme designed to
meet modern security demands without the complexity of certificate management, modular ex-
ponentiation, or pairing operations. Built on the well-established hardness of the Elliptic Curve
Discrete Logarithm Problem (ECDLP), our scheme successfully delivers all essential security
features: confidentiality, integrity, unforgeability, non-repudiation, forward secrecy, public ver-
ifiability, and protection against internal threats. By operating in a certificateless environment,
it eliminates the overhead and vulnerabilities commonly associated with traditional public key
infrastructures.

When compared with existing schemes, the proposed solution demonstrates both practical
and theoretical strengths. It matches the security level of Hwang et al. (2005) while simplifying
implementation by removing the need for certificates. Unlike Zhang et al. (2022), which lacks
public verifiability, our scheme allows third parties to independently verify message authentic-
ity, a valuable feature for transparent and accountable systems. It also addresses key limitations
in earlier designs such as Zheng and Imai (1998), which do not offer forward secrecy or verifia-
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bility, and Tsai and Su (2017), which miss both. Moreover, it improves on Bashir and Ali (2019)
by achieving faster performance and offering better protection against private key compromise.

With a total computational cost of approximately 0.226 milliseconds, the scheme performs
efficiently while maintaining strong security guarantees. This makes it particularly well-suited
for real-world applications in resource-constrained settings, such as mobile platforms, IoT de-
vices, and embedded systems.

Overall, the proposed signcryption scheme offers a well-balanced solution, secure, efficient,
and practical for today’s increasingly decentralized and lightweight environments.
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