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ABSTRACT

Paddy production is a vital sector in Malaysia’s agricultural economy, with Pertubuhan
Peladang Kawasan (PPKs) under the Muda Agricultural Development Authority (MADA)
playing a key role in sustaining yields and sector resilience. This study evaluates the efficiency
and productivity changes of 27 PPKs over four planting seasons (Season 2, 2020 — Season 1,
2022) using output-oriented Data Envelopment Analysis (DEA) with the BCC model and the
Malmquist Productivity Index (MPI). DEA results show an average efficiency score of 0.892
(89.2%), with PPK Arau and PPK Kangar achieving full efficiency consistently. However,
92.6% of the PPKs experienced inefficiency in at least one season, with the lowest score
recorded in Season 2, 2020. The MPI analysis assessed productivity changes across three
phases: Season 2, 2020 — Season 1, 2021; Season 1, 2021 — Season 2, 2021; and Season 2, 2021
— Season 1, 2022. The findings revealed a mixed performance trend, where several PPKs
experienced productivity growth while others saw declines. Titi Haji Idris recorded the highest
MPI score (2.8921), indicating strong productivity improvement overall, although a temporary
drop was observed in Phase 2 (0.7787) before recovering. The lowest score was recorded by
Hutan Kampung (0.6543), whereas Arau maintained an MPI score close to 1.000 across all three
phases, indicating stable productivity performance. These findings highlight the need for
targeted interventions, efficient resource allocation, and the adoption of technology.
Benchmarking against high-performing PPKs can support strategic planning and strengthen the
sustainability of national paddy production.
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ABSTRAK

Pengeluaran padi merupakan sektor penting dalam ekonomi pertanian Malaysia, dengan
Pertubuhan Peladang Kawasan (PPK) di bawah Lembaga Kemajuan Pertanian Muda (MADA)
memainkan peranan utama dalam mengekalkan hasil dan kelestarian sektor ini. Kajian ini
menilai kecekapan dan perubahan produktiviti 27 PPK sepanjang empat musim penanaman
(Musim 2, 2020 — Musim 1, 2022) menggunakan Analisis Penyampulan Data (APD)
berorientasikan output dengan model BCC serta Indeks Produktiviti Malmquist (MPI). Dapatan
APD menunjukkan purata skor kecekapan sebanyak 0.892 (89.2%), dengan PPK Arau dan
Kangar mencapai kecekapan penuh secara konsisten. Namun, 92.6% daripada PPK mencatatkan
ketidakefisienan sekurang-kurangnya dalam satu musim, dengan skor terendah direkodkan pada
Musim 2, 2020. Analisis MPI pula menilai perubahan produktiviti merentasi tiga fasa: Musim
2 2020 — Musim 1 2021, Musim 1 2021 — Musim 2 2021, dan Musim 2 2021 — Musim 1 2022.
Hasil menunjukkan corak prestasi yang bercampur, dengan beberapa PPK menunjukkan
peningkatan produktiviti manakala yang lain mengalami penurunan. Titi Haji Idris mencatatkan
skor MPI tertinggi (2.8921), namun mengalami penurunan dalam Fasa 2 (0.7787) sebelum
meningkat semula. Skor terendah direkodkan oleh Hutan Kampung (0.6543), manakala Arau
mengekalkan skor sekitar 1.000 dalam ketiga-tiga fasa, menunjukkan kestabilan prestasi.
Dapatan ini menekankan keperluan kepada intervensi bersasar, pengagihan sumber secara
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efisien dan penggunaan teknologi. Penandaarasan terhadap PPK berprestasi tinggi boleh
menyokong perancangan strategik dan memperkukuh kelestarian pengeluaran padi negara.

Kata kunci: kecekapan; APD; produktiviti; padi, Indeks Produktiviti Malmquist

1. Introduction

Paddy is a strategic and culturally significant crop in Malaysia, serving as the staple food for
the majority of the population. Ensuring the sustainability and productivity of the paddy sector
is critical not only for national food security but also for safeguarding the livelihoods of
hundreds of thousands of farmers. The Malaysian government has consistently prioritized rice
self-sufficiency, as reflected in successive policy frameworks such as the National Agro-Food
Policy (2011-2020), the Eleventh Malaysia Plan (2016-2020), and most recently, the National
Agro-Food Policy 2.0 (NAFP 2021-2030). These policies aim to enhance paddy production,
modernize the agricultural sector, and reduce reliance on rice imports.

Despite various efforts, Malaysia’s paddy production continues to face persistent structural
challenges. These include fragmented land ownership, limited mechanization in certain regions,
and an aging farming population. Climate-related factors have also become a growing concern.
In a recent study, Firdaus et al. (2020) highlighted that climate variability particularly
fluctuations in rainfall and temperature has significantly affected paddy yields in Peninsular
Malaysia. Similar concerns have been documented across Southeast Asia, where Waqas et al.
(2024) emphasized that climate change remains a major threat to agricultural productivity,
especially for water-intensive crops such as paddy.

The Muda Agricultural Development Authority (MADA) man ages one of the largest rice
granary areas in Northern Malaysia and plays a crucial role in ensuring consistent production
levels. In MADA, each Paddy Collection Center is operated by its respective Pertubuhan
Peladang Kawasan (PPKs), a farmer organization that manages services at the local level.
However, differences in productivity and operational efficiency among PPKs suggest that not
all are utilizing their resources optimally or adopting modern technologies effectively (Zaibidi
et al. 2016). Furthermore, while certain PPKs have started exploring precision farming
technologies, widespread adoption remains limited. As noted by Hashim et al. (2024), smart
farming approaches in Malaysian paddy fields are still at an early stage, facing constraints in
infrastructure, awareness, and technical expertise.

Paddy consumption in Malaysia has steadily increased over the last two decades due to
population growth and changing dietary patterns. Between 2010 and 2020, domestic demand
for rice rose from 2.69 million metric tons to 2.80 million metric tons, while paddy production
remained relatively stagnant (Nixon 2024). This gap between demand and domestic production
has resulted in increased dependence on imported rice to meet national consumption needs
(Makhtar et al. 2022). Addressing inefficiencies in local paddy production, especially within
high-impact areas such as MADA, is essential to reduce this dependency and strengthen
national food security.

Efficiency analysis in agriculture offers a way to assess the performance of production units
relative to their peers. Data Envelopment Analysis (DEA) is a widely used non-parametric
method for evaluating the relative efficiency of Decision-Making Units (DMUs) based on
multiple inputs and outputs (Charnes et al. 1978). In the context of paddy production, DEA
allows for the assessment of farm-level efficiency by comparing inputs such as land area,
fertilizers, labor, and machinery against the paddy yield (Nandy & Singh 2021). The method
helps identify underperforming units and provides benchmarks for improvement.
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Beyond static efficiency, understanding how productivity evolves over time is essential. The
Malmquist Productivity Index (MPI) enables the decomposition of total productivity change
into two components: Efficiency Change (EC) and Technological Change (TC). This approach
is particularly useful in agricultural studies where productivity is influenced by seasonal
changes, policy interventions, and environmental factors (Al-Refaie et al. 2015; Liu et al.
2024). For example, Liu ef al. (2024) highlighted how input quality, institutional settings, and
environmental changes significantly affect total factor productivity in food crop systems in
China, which supports the relevance of MPI-based evaluations.

DEA-MPI integration provides a dynamic view of performance that goes beyond a single-
point analysis. Previous studies in the Malaysian context have employed DEA and related
methods to evaluate rice farm performance. Kalimuthu and Applanaidu (2024) analyzed the
key determinants of paddy productivity in the MADA region, while Mailena et al. (2014) used
a two-stage DEA approach with bootstrapping and Tobit regression. Zaibidi et al. (2018)
compared SFA and DEA to assess environmental awareness among farmers. Nodin et al. (2021)
applied DEA to compare efficiency in granary versus non-granary areas. However, these
studies largely focus on single-season efficiency or cross-sectional analysis. Empirical
applications of DEA combined with MPI to analyze productivity trends across multiple planting
seasons, particularly at the PPK level within MADA, are still limited.

This study seeks to fill that gap by evaluating the technical efficiency and productivity trends
of 27 PPKs under MADA over four consecutive planting seasons (Season 2, 2020 — Season 1,
2022). The findings will offer insights into whether these PPKs are improving or declining in
performance over time and identify best practices that can be replicated to enhance rice
production efficiency in Malaysia. Through this analysis, the study aims to support evidence
based policymaking and contribute to long-term strategies that enhance food security and
agricultural sustainability. The remainder of the paper continues as follows: the data is outlined
in Section 2, as well as the elaboration of the methodology. Section 3 provides the empirical
findings and discussions, and lastly, Section 4 sums up the whole paper with conclusions and
suggested future work.

2. Materials and Methods

2.1. Data

The following section provides a detailed explanation of the dataset used in this study. The
research aims to evaluate and interpret the productivity of paddy production in the northern
region of Malaysia, specifically within areas managed by the Muda Agricultural Development
Authority (MADA). MADA is a federal agency responsible for managing irrigation
infrastructure and paddy cultivation systems in the Muda region. The administrative and
operational structure of MADA, including the distribution of Pertubuhan Peladang Kawasan
(PPK) across its four main regions, is summarized in Table 1.

This study focuses on four key regions under MADA’s supervision. Each of these regions
consists of several PPK, which play a crucial role in the collection, storage, and management
of harvested paddy before it is marketed or distributed to relevant parties. PPKs also serve as
operational hubs that oversee paddy farming activities, including the provision of agricultural
inputs, research on more efficient cultivation methods, and monitoring crop performance to
ensure effective paddy production.

In total, 27 PPKs operate under MADA’s administration to facilitate the smooth governance
and management of the paddy farming sector in the states of Kedah and Perlis as shown in
Table 1.
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Table 1: List of PPK under the supervision of MADA

Region PPK Pertubuhan Peladang Kawasan (PPK) Number of PPK
Region [ A-1 Arau
(Perlis) B-1 Kayang
C-1 Kangar 5
D-I Tambun Tulang
E-I Simpang Empat
Region 11 A-11 Kodiang
(Jitra) B-1I Sanglang
C-II Kerpan
D-II Tunjang
E-1I Kubang Sepat 9
F-II Jerlun
G-II Jitra
H-1I Kepala Batas
I-11 Kuala Sungai
Region 111 A-IIT Hutan Kampong
(Pendang) B-1II Alor Senibong
C-111 Tajar 6
D-III Titi Haji Idris
E-III Kobah
F-1IT Pendang
Region IV A-1V Batas Paip
(Kota Sarang Semut) B-IV Pengkalan Kundur
C-1v Kangkong
D-1V Permatang Buluh 7
E-IV Bukit Besar
F-IV Sungai Limau

G-IV Guar Chempedak

To ensure efficient oversight, MADA has divided these areas into four main regions:

e Region [ — Kangar (State of Perlis)

e Region II — Jitra (State of Kedah)

e Region III — Pendang (State of Kedah)

e Region IV — Kota Sarang Semut (State of Kedah)
This regional division allows for a more systematic and comprehensive monitoring of paddy
farming activities in these areas. Additionally, this organizational structure helps optimize
agricultural resources and enhances the effectiveness of strategies aimed at improving paddy
yields within MADA’s jurisdiction.

2.2. Input and output variables

In efficiency analysis using DEA, the selection of appropriate input and output variables is
crucial to ensure accurate and meaningful assessment of performance. In this study, the output-
oriented BCC model (Banker ef al. 1984) is applied in the first stage to evaluate the efficiency
scores of PPKs involved in paddy cultivation. A total of seven input variables and one output
variable are considered, as summarized in Table 2.

Table 2 presents the selected inputs and output for this study, along with their respective
units. The output is the average yield, calculated by dividing the total paddy yield by the land
area under cultivation. A higher average yield signifies better efficiency in paddy production.
The first input is the number of farmers represents the labor force available for farming
activities, including land preparation, planting, maintenance, and harvesting. The second input
is land area. This input represents the amount of land allocated for growing paddy and plays a
crucial role in determining overall production. A larger land area can potentially yield more
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output.Third input is fertilizer (compound). It is used to enhance soil fertility and promote
healthy paddy growth. The effectiveness of compound fertilizer depends on its proper
application, ensuring balanced nutrient supply to improve crop yield and overall farming
efficiency. The fouth input is Urea. It is widely used in paddy farming to promote healthy leaf
and stem development, which is crucial for higher crop yields. Urea is highly soluble in water
and must be applied correctly to prevent nutrient loss due to evaporation or leaching. Proper
usage helps improve soil fertility and enhances the efficiency of paddy production. The fifth
input, NPK fertilizer, is commonly used in paddy farming to ensure balanced nutrient supply,
leading to improved productivity and efficiency in paddy cultivation.

The sixth input is plowing costs, which include labor, machinery (such as tractors or plows),
and fuel. Proper plowing helps improve soil aeration, water retention, and nutrient absorption,
which are essential for healthy paddy growth and higher yields. Efficient management of
plowing costs can contribute to better overall farm productivity. The last input is pesticide cost.
This cost includes the price of chemical or biological pesticides, labor for application, and
equipment used for spraying. Proper pesticide management is essential to prevent crop damage,
ensure healthy plant growth, and maximize yield while minimizing environmental impact and
unnecessary costs.

Table 2: Description input output selected

Variable Units Description
. Average yield refers to the average amount of paddy

Output Average yield Kg/Hektar
harvested per season.

Inputs No of farmer Farmers Number of farmers refers to the total count of farmers
involved in paddy cultivation within a specific area or
organization.

Land area Land area refers to the total size of the farmland used
Hektar (Ha) . .
for paddy cultivation, usually measured in hectares.
Fertilizer No. of Bags  Fertilizer (Compound) refers to a type of fertilizer that
(Compound) contains a mix of essential nutrients, such as Nitrogen
(N), Phosphorus (P), and Potassium (K), in a single
formulation.
Urea No. of Bags  Urea is a type of nitrogen-based fertilizer that provides
an essential nutrient for plant growth.
NPK No. of Bags  NPK fertilizer refers to a type of fertilizer that contains
three primary nutrients essential for plant growth:
Nitrogen (N); Phosphorus (P) and Potassium (K).
Plowing cost RM Plowing cost refers to the expenses incurred for land
preparation before planting, including activities such
as soil tilling, leveling, and breaking up hard soil.
Pesticide cost RM Pesticide cost refers to the expenses associated with

purchasing and applying pesticides to protect paddy

crops from pests, diseases, and weeds.

The selection of input and output variables in this study is grounded in both theoretical
relevance and empirical support from prior studies. Inputs such as labor (represented by the
number of farmers), land, and fertilizer types are commonly identified as critical factors in
agricultural efficiency analyses (Coelli et al. 2005; Mailena et al. 2014; Kalimuthu &
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Applanaidu 2024). Additionally, cost-related inputs such as plowing and pesticide expenditure
reflect operational investment and are often used in DEA studies to capture the resource
intensity of crop production. The output variable, average yield per season serves as a
standardized indicator of productive performance and is consistent with prior applications in
paddy efficiency evaluations. While correlation analysis was not conducted, the inclusion of
these variables was guided by their consistent appearance in literature and practical significance
in the context of paddy production under MADA.

2.3. Methodology

This study employs a two stage approach. The first stage focuses on the estimation of technical
efficiency using DEA method. The second stage deals with the estimation of paddy productivity
for three seasonal pair using MPI based on the estimated efficiency obtained in stage 1. Figure
1 presents the research methodology of this study.

Input variable

Stage 1 1. No. of farmer
; 2. Land area Outbut variable
Data Collection 3. Fertilizer (Compound) Avgrage vield
4.  Urea
5. NPK
6.  Flowing cost
‘} 7.  Pertecide cost
Stage 11

Calculate efficiency score (DEA Model)

A

Stage 111
Measure Malmquist Productivity Index
(MPI: EC and TC)

l

Stage IV
Interpretation and Comparison
(by PPK, season)

Figure 1: Process flow of the research methodology

The DEA model is first employed to calculate the technical efficiency of each PPK across
four consecutive planting seasons. These seasonal efficiency scores are then utilized to compute
the MPI, which captures productivity changes between seasons. This sequential application
ensures a cohesive framework where DEA provides the efficiency baseline, and MPI reveals
the dynamics over time. The findings are interpreted jointly to assess both static and dynamic
performance of the paddy-producing PPKs.
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2.3.1 Data Envelopment Analysis (DEA)

The DEA method, originally introduced by Farrell (1957), is a non-parametric linear
programming technique designed to evaluate the efficiency performance of firms or
organizations, commonly referred to as DMUs in DEA literature. The methodology was later
extended by Charnes et al. (1978), who proposed an input-oriented model known as the
Charnes, Cooper, and Rhodes (CCR) model. DEA has gained renewed attention in recent
empirical research, particularly in agricultural and environmental efficiency assessments (Ben
Mabrouk et al. 2022; Sanyaolu & Sadowski 2024).

The CCR model assumes Constant Returns to Scale (CRS), implying that increases or
reductions in inputs lead to proportional changes in outputs. Under this assumption, all DMUs
are evaluated based on a common production frontier, and the resulting score reflects General
Technical Efficiency (GTE) (Nunamaker 1985). While the CCR model provides a foundational
framework, it may not fully capture operational realities when scale efficiency varies. To
address this, Banker er al. (1984) introduced the BCC model, which relaxes the CRS
assumption to accommodate Variable Returns to Scale (VRS). The BCC model allows for
distinguishing whether a DMU operates under increasing, constant, or decreasing returns to
scale, making it more suitable for assessing efficiency across heterogeneous units with diverse
operational capacities.

In this study, each DMU represents a Pertubuhan Peladang Kawasan (PPK). Each PPK
utilizes multiple agricultural inputs, including the number of farmers, land area, fertilizer
application (compound, urea, and NPK), plowing cost, and pesticide cost to produce a single
output, namely the average paddy yield per season. The output-oriented BCC model is
employed to assess how efficiently each PPK transforms inputs into output relative to a
benchmark frontier formed by the most efficient units. This approach evaluates the maximum
feasible output expansion each PPK could achieve while holding input levels constant. The
following linear programming formulation is used to estimate the relative efficiency score:

max ¢

subject to:

n
z/ijxij <x,; V,=1.... ,m
J=1

3,209, 5 Y, =1 (1)
Z jyrj_¢ym’ PR PRI 5

j=1

>4, =1

j=1

/l 205 V =l N

where:

x; : Input 7 used by PPK /. Examples of inputs include the number of farmers, land

area, fertilizers (compound, urea, NPK), plowing cost, and pesticide cost.
Y, : Output r produced by PPK ;. In this study, the output refers to the average paddy

yield per season.
x, : Value of input i for the PPK being evaluated (target PPK).
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v,, - Value of output r for the PPK being evaluated (target PPK).
A; : Weight assigned to PPK j in forming the reference set for the target PPK’s

J
efficiency evaluation.
n : Total number of PPKs evaluated.

m : Number of inputs used in the model.
S : Number of outputs used in the model.

The variable ¢ shows how much a PPK’s output can be increased using the same amount
of input in order to become efficient. The best value, ¢, tells us the maximum increase possible.

In simple terms, it reflects how many times the current output can be boosted to reach the level
of the most efficient PPKs. To measure this, an output-oriented BCC model is used, which
compares each PPK to the top-performing ones, known as the efficiency frontier. The Eq. (1)
calculates ¢ , which indicates the additional output a PPK needs to produce to become efficient.

A higher ¢ value means the PPK is further behind. However, to make the results easier to

interpret, the efficiency score is normalized into a value between 0 and 1, denoted as & . This
normalized score provides a clearer picture of efficiency:

e A score of 1 means the PPK is fully efficient.

e A score closer to 0 means there is still a lot of room for improvement.

This method helps us easily identify which PPKs are performing well and which ones need to
improve their output using the same level of input.

2.3.2 Malmquest Productivity Index (MPI)

The MPI is used to assess productivity changes in paddy production from one planting season
to the next. In the context of paddy farming, this includes the adoption of high-quality seed
varieties, mechanization of land preparation and harvesting, use of modern irrigation systems,
and improved agronomic practices. This is known as the "frontier shift," where technology
enhances the maximum achievable output, even when input levels remain unchanged. By
combining these two components, the MPI helps determine whether productivity improvements
are due to better efficiency in managing available resources, technological progress, or both.
Although the MPI is calculated using mathematical distance functions, the core idea is simple:
it compares the actual paddy output to the potential output under optimal conditions and tracks
changes in productivity across seasons whether from internal improvements by farmers or
external advancements in agricultural technology (Coelli ef al. 2005). To evaluate changes in
productivity across paddy farming seasons, this study applies the MPI framework. As detailed
in Section 2.3.1, efficiency scores for each PPK were derived using DEA model. The MPI
captures productivity change by comparing distance functions (DEA efficiency scores) across
two adjacent time periods using two alternative reference technologies. These comparisons are
based on the following two approaches:

Approach 1: Reference Technology from Season ¢ (Past Technology)-This method measures
productivity change based on the DEA frontier from the initial season ¢:

MPIV = th (xm,ym)

= (2)
Dtt (xt > Vi )

where:
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D (xt, yt) is the DEA score of the PPK in season ¢, evaluated using the technology
available in season ¢.

D! (xm, )’m) is the DEA score of the same PPK in season 7+1, evaluated using the
same (past) technology from season ¢ .

Approach 2: Technology from Season ¢+1 (Future Technology Reference)-Eq.(3) uses the
DEA frontier from the subsequent season:

Mgm = —D;:{SXW%H) (3)
Dt+1 ('xt b yz )

where

D (x[, y,) is the the DEA score of the PPK in season ¢, evaluated using the future

t+1

technology frontier (season ¢ +1).
D”l(xm, ym) is the the DEA score of the PPK in season #+1, evaluated using the

t+1

current technology frontier.

Combined Approach-MPI (Geometric Mean): Eq. (2) and (3) represent two distinct
perspectives for measuring productivity change between two time periods (seasons). Eq. (2)
evaluates performance using the production technology from season ¢ as the reference, while
Eq. (3) uses the technology from season #+1. Each perspective reflects how a production unit
performs relative to the respective period’s frontier. To provide a more balanced and
comprehensive assessment of productivity change, both perspectives are combined using a
geometric mean, as proposed by Fire et al. (1994). This leads to the formulation of the MPI, as
shown in Eq. (4):

. 4
MPI = D: (XM > Vi ) thﬂl (xt+l > Vin ) ’ “4)
>+ D! (xt ,yt) D (xt ,yt)

t t+1

Eq. (4) captures the overall productivity change across two periods, but it does not indicate
whether the change is driven by improvements in efficiency or shifts in technology. To address
this, the MPI can be further decomposed into two components: EC and TC. This decomposition
provides deeper insight into the sources of productivity growth. The relationship is shown in

Eq. (5):
MPI=EC*TC (5)

The EC component reflects the ability of a production unit, such as a paddy-producing entity,
to catch up to the best practice frontier over time. It compares how efficiently inputs are used
to produce outputs across two periods (seasons) and is calculated as:

foll (xx+1’yx+l)

EC=
D! (x,.y,)

(6)

285



Roslah Arsad, Zaidi Isa & Mazura Mokhtar

The TC component captures shifts in the production frontier itself, which represent
technological advancements or innovations in farming practices. It is measured as the geometric
mean of the relative shifts in distance functions across periods, as shown in below:

1
e (2 )Y 22 ] o
Dttjll (xt+l>yt+l) Dtt:ll (xt’yt)

Through this decomposition, it becomes easier to understand whether the observed
improvements in paddy productivity are due to farmers becoming more efficient in using
available inputs such as land, fertilizers, seeds, and labor or due to the adoption of better
agricultural technologies, such as improved seed varieties, mechanization, or more effective
irrigation systems. According to Fére et al. (1994), the MPI offers several advantages over other
productivity measurement approaches. First, it only requires quantity data on inputs and
outputs, without the need for price information, which is often unavailable, especially in
agricultural settings. Second, since MPI is based on linear programming, it does not require any
assumption about the underlying production function, and therefore avoids the complications
related to error terms in statistical models. Third, it does not assume that producers are always
optimizing their behavior, such as maximizing output or profit. Most importantly, the MPI
allows us to break down productivity change into two meaningful components efficiency
change and technical change, giving valuable insight into both the internal improvements made
by farmers and the external shifts in technology over time.

3. Results and Discussions

3.1. Efficiency analysis

Based on the DEA-BCC results shown in Table 3, PPKs with a score of 1.0000 are considered
fully efficient, while those with scores below 1.0000 are classified as inefficient. The analysis
of 27 PPKs across four seasons; Season 2 (2020), Season 1 (2021), Season 2 (2021), and Season
1 (2022) reveals an overall average efficiency score of 0.892 (or 89.2%). This indicates a
relatively high level of efficiency, though there remains room for improvement in several PPKs.
Among the most efficient PPKs, Arau and Kangar from Region I consistently achieved a perfect
score of 1.0000 in all seasons, demonstrating sustained operational excellence. These two PPKs
can serve as benchmarks for other PPKs aiming to enhance their efficiency. However, 92.6%
(25 out of 27 PPKs) exhibited inefficiency in at least one season, underscoring the widespread
need for performance optimization in resource management and operational practices.

Examining efficiency trends across seasons, Season 2 (2020) recorded the lowest efficiency
levels, with many PPKs scoring below 0.90. A slight improvement was observed in Season 1
(2021), reflecting adjustments and enhancements in agricultural practices. In Season 2 (2021),
efficiency remained relatively stable, with some PPKs showing minor improvements. In Season
1 (2022), several PPKs demonstrated significant efficiency gains, yet disparities between highly
efficient and inefficient units persisted. In Region 1V, Pengkalan Kundur maintained full
efficiency for three consecutive seasons (2 (2020), 1 (2021), and 2 (2021)) but experienced a
slight decline to 0.9390 in 1 (2022). Similarly, Kangkong and Bukit Besar exhibited steady
improvements, reaching full efficiency in the final season.
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Conversely, some PPKs consistently struggled with inefficiency. Titi Haji Idris (Region III)
had the lowest efficiency scores, ranging from 0.5173 in Season 2 (2020) to 0.6601 in Season
1 (2022), showing minimal improvement. Alor Senibong in the same region remained
inefficient, with scores fluctuating between 0.6974 and 0.8190. Likewise, Guar Chempedak
(Region IV) consistently scored below 0.88, indicating ongoing inefficiencies, while Tunjang
(Region II) failed to surpass 0.90, suggesting persistent operational challenges. Despite these
inefficiencies, several PPKs demonstrated positive efficiency trends. Kayang (Region I)
improved significantly from 0.8453 in Season 2 (2021) to 0.9881 in Season 1 (2022), nearing
full efficiency. In Region II, Kerpan performed consistently well, reaching 0.9794 in the final
season. A similar trend was observed in Region IV, where Kangkong and Bukit Besar achieved
full efficiency in Season 1 (2022) following steady progress.

Table 3: Efficiency score for season from Season 2 (2020) to Season 1 (2022)

Region Pertubuhan Peladang Season
Kawasan (PPK) 2 (2020) 1 (2021) 2 (2021) 1(2022)
Region I A-I Arau 1.0000 1.0000 1.0000 1.0000
(Perlis) B-1 Kayang 0.8636 0.8749 0.8453 0.9881
C-1 Kangar 1.0000 1.0000 1.0000 1.0000
D-I Tambun Tulang 0.9083 0.8889 0.9042 0.9311
E-1 Simpang Empat 0.8000 0.9346 0.9025 0.9208
Region II A-II Kodiang 0.9042 0.8547 0.8865 0.8857
(Jitra) B-II Sanglang 0.7981 0.8375 0.9001 0.8787
C-II Kerpan 0.9066 0.9718 0.9217 0.9794
D-II Tunjang 0.7680 0.8354 0.8482 0.8961
E-IT Kubang Sepat 1.0000 0.9542 0.8703 0.9662
F-1I Jerlun 0.9814 0.9588 0.8969 0.9533
G-1I Jitra 0.7937 0.7734 0.9107 0.8039
H-II Kepala Batas 0.8913 0.8757 0.8518 0.8688
I-1IT Kuala Sungai 0.8467 0.9398 0.9225 0.9050
Region 111 A-III Hutan Kampong 0.8058 0.9542 0.9294 0.7843
(Pendang) B-II1 Alor Senibong 0.6974 0.8123 0.8190 0.7435
C-1II Tajar 0.7968 0.9794 0.8905 0.9166
D-III Titi Haji Idris 0.5173 0.7911 0.7158 0.6601
E-III Kobah 0.7148 0.8562 0.8347 0.9099
F-1II Pendang 0.8985 0.9653 0.9083 0.9107
Region IV A-IV Batas Paip 0.8842 0.9033 0.8865 0.9579
(Kota Sarang ~ B-IV Pengkalan Kundur 1.0000 1.0000 1.0000 0.9390
Semut) C-1Iv Kangkong 0.8757 0.9320 0.9066 1.0000
D-IV Permatang Buluh 0.8511 0.9234 0.8658 0.9066
E-IV Bukit Besar 0.9107 0.9506 0.9124 1.0000
F-IV Sungai Limau 0.8163 0.9756 0.9328 0.9634
G-IV Guar Chempedak 0.7800 0.8787 0.8688 0.8628

Overall, Region I recorded the highest proportion of efficient PPKs, with Arau and Kangar
maintaining full efficiency throughout the study period. Regions II, III, and IV exhibited mixed
performances, with persistent inefficiencies in several PPKs. Notably, underperforming PPKs
such as Titi Haji Idris, Alor Senibong, and Guar Chempedak require targeted interventions to
enhance efficiency.

Meanwhile, high-performing PPKs like Arau, Kangar, and Pengkalan Kundur can serve as
benchmarks for best practices, offering valuable insights into strategies for improving
efficiency among underperforming units. While the overall efficiency of PPKs remains
relatively high, the substantial performance gap between the most and least efficient PPKs
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highlights the need for technological adoption, improved resource management, and tailored
strategic interventions to achieve a more balanced and efficient agricultural sector.

Figure 2 illustrates the efficiency score trends of selected PPKs (Titi Haji Idris, Arau, Jitra,
Alor Senibong, and Kobah) across four consecutive planting seasons. Among these, Arau
consistently recorded a perfect efficiency score (1.0000), making it a potential benchmark for
best practices in resource utilization and operational management. In contrast, PPKs like Titi
Haji Idris and Alor Senibong showed lower efficiency levels, although both exhibited
improvements over time. The widening gap between top-performing and less efficient PPKs
underscores the need for enhanced technological adoption, targeted interventions, and capacity
building to ensure more balanced performance across the MADA region.
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Figure 2: Temporal changes in efficiency scores among selected PPKs across 4 season

3.2. Productivity analysis

The MPI is a method used to measure changes in productivity over time, particularly in the
context of production or efficiency. In this case, it is applied to evaluate the productivity
performance of PPK from one season to the next. The first seasonal pair covers the period from
Season 2 (2020) to Season 1 (2021) (MPI 1); Season 1 (2021) to Season 2 (2021) (MPI 2);
and the third period periods from Season 2 (2021) to Season 1 (2022).

Three MPIs for each PPK have been calculated, providing insights into productivity changes
for each PPK. The overall MPI value reflects total productivity changes, where productivity
increases or decreases result from a combination of Efficiency Change (EC) and Technological
Change (TC). Table 4 presents the analysis of the MPI by comparing relative efficiency in
seasonal pairs. The MPI values shown illustrate productivity changes between two consecutive
seasons, specifically from Season 2 (2020) to Season 1 (2021).

An MPI value greater than 1 indicates an increase in productivity, while a value less than 1
reflects a decline. For Region I (Perlis), PPK Kayang recorded an MPI of 1.0331, indicating a
3.31% productivity increase, while PPK Simpang Empat showed an MPI of 1.4751, reflecting
a 47.51% increase, the highest in the region. Conversely, PPK Tambun Tulang experienced a
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productivity decline with an MPI of 0.9475, representing a 5.25% decrease. Both PPK Arau
and PPK Kangar maintained an MPI of 1.0000, indicating no change in productivity.

In Region II (Jitra), PPK Sanglang recorded an MPI of 1.1282, reflecting a 12.82%
productivity increase, while PPKs Kerpan and Tunjang showed improvements of 18.96% and
23.39%, respectively. The highest increase was observed in PPK Kuala Sungai, with an MPI of
1.2980, marking a 29.80% productivity improvement. However, several PPKs experienced
productivity declines. PPK Kodiang recorded an MPI of 0.8688, indicating a 13.12% decline,
while Kubang Sepat had an MPI of 0.8894, showing an 11.06% decrease. Other PPKs, such as
Jerlun (MPI: 0.9435), Jitra (MPIL: 0.9374), and Kepala Batas (MPI: 0.9568), also showed
productivity declines of 5.65%, 6.26%, and 4.32%, respectively.

Table 4: Malmquist Index Analysis from Season 2 (2020 ) to Season 1 (2021)

Region Pertubuhan Peladang Change Malmquist  Productivity
Kawasan (PPK) Efficiency  Technological Index Interpretation
Region I A-1 Arau 1.0000 1.0000 1.0000 No Change
(Perlis) B-1 Kayang 1.0131 1.0197 1.0331 Increasing
C-1 Kangar 1.0000 1.0000 1.0000 No Change
D-I Tambun Tulang 0.9787 0.9682 0.9475 Decreasing
E-1 Simpang Empat 1.1682 1.2627 1.4751 Increasing
Region 11 A-I1 Kodiang 0.9453 0.9191 0.8688 Decreasing
(Jitra) B-1I Sanglang 1.0494 1.0750 1.1282 Increasing
C-II Kerpan 1.0719 1.1098 1.1896 Increasing
D-1I Tunjang 1.0877 1.1344 1.2339 Increasing
E-11 Kubang Sepat 0.9542 0.9321 0.8894 Decreasing
F-11 Jerlun 0.9770 0.9657 0.9435 Decreasing
G-11 Jitra 0.9745 0.9620 0.9374 Decreasing
H-1I Kepala Batas 0.9825 0.9738 0.9568 Decreasing
I-11 Kuala Sungai 1.1100 1.1694 1.2980 Increasing
Region II1 A-II1 Hutan Kampong 1.1842 1.2886 1.5259 Increasing
(Pendang) B-III Alor Senibong 1.1649 1.2573 1.4646 Increasing
C-111 Tajar 1.2292 1.3628 1.6751 Increasing
D-III  Titi Haji Idris 1.5293 1.8912 2.8921 Increasing
E-1II Kobah 1.1978 1.3109 1.5701 Increasing
F-111 Pendang 1.0743 1.1135 1.1963 Increasing
Region IV A-IV  Batas Paip 1.0217 1.0327 1.0551 Increasing
(Kota Sarang B-IV  Pengkalan Kundur 1.0000 1.0000 1.0000 No Change
Semut) C-IV  Kangkong 1.0643 1.0980 1.1686 Increasing
D-IV  Permatang Buluh 1.0849 1.1301 1.2261 Increasing
E-IV  Bukit Besar 1.0437 1.0663 1.1129 Increasing
F-IV Sungai Limau 1.1951 1.3065 1.5615 Increasing
G-IV Guar Chempedak 1.1265 1.1957 1.3470 Increasing

Region III (Pendang) demonstrated significant productivity improvements across all PPKs.
PPK Titi Haji Idris recorded the highest increase in the entire dataset, with an MPI of 2.8921,
reflecting a 189.21% productivity surge. Other PPKs, such as Hutan Kampong (52.59%), Alor
Senibong (46.46%), Tajar (67.51%), and Kobah (57.01%), also recorded substantial increases.
PPK Pendang showed a more moderate improvement, with an MPI of 1.1963, indicating a
19.63% increase. In Region IV (Kota Sarang Semut), several PPKs demonstrated productivity
gains. PPK Sungai Limau recorded an MPI of 1.5615, reflecting a 56.15% improvement,
followed by Guar Chempedak (MPI: 1.3470) with a 34.70% increase. Other PPKs, such as
Permatang Buluh (22.61%) and Bukit Besar (11.29%), also experienced productivity growth.
However, PPK Pengkalan Kundur recorded an MPI of 1.0000, indicating no change in
productivity.
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EC measures relative efficiency changes of a unit (PPK) from one season to the next, without
accounting for technological advancements. An EC value greater than 1.0 signifies improved
efficiency, while a value below 1.0 suggests efficiency declines. PPK Simpang Empat (EC:
1.1682) in Region I and PPKs Kuala Sungai (EC: 1.1100) and Tunjang (EC: 1.0877) in Region
II demonstrated improved efficiency. In Region III, PPK Titi Haji Idris exhibited the highest
efficiency increase (EC: 1.5293), while PPKs Sungai Limau (EC: 1.1951) and Guar Chempedak
(EC: 1.1265) led efficiency improvements in Region IV. Conversely, PPK Tambun Tulang
(EC: 0.9787) and Kubang Sepat (EC: 0.9542) showed declining efficiency, suggesting input
optimization challenges. TC measures advancements in production techniques. TC values
above 1.0 indicate technological progress, while values below 1.0 signal technological
regression. In Region I, PPK Simpang Empat (TC: 1.2627) recorded notable technological
improvements, while PPK Tambun Tulang (TC: 0.9682) lagged. In Region II, PPK Kuala
Sungai (TC: 1.1694) and Tunjang (TC: 1.1344) demonstrated significant technological
advancements. Region III recorded the highest technological progress, particularly in PPK Titi
Haji Idris (TC: 1.8912), while in Region IV, PPK Sungai Limau (TC: 1.3065) and Guar
Chempedak (TC: 1.1957) showed considerable advancements. Overall, Regions III and IV
demonstrated the most substantial productivity improvements, largely attributed to efficiency
gains and technological progress. Conversely, productivity declines in Region II highlight
challenges that require strategic interventions, such as improved management practices and
technology adoption, to enhance overall performance.

Table 5 shows the analysis of MPI from Season 1 (2021) to Season 2 (2021). In Region I
(Perlis), PPK Tambun Tulang recorded a productivity increase with an MPI value of 1.0435.
Tambun Tulang’s showed an increase of 4.35% in productivity. On the other hand, PPK
Simpang Empat and PPK Kayang both showed slight declines with MPI values of 0.9165 and
0.9176, respectively. PPK Arau and PPK Kangar showed no change in productivity, with MPI
values remaining at 1.0000, indicating stable productivity during this period. In Region II
(Jitra), several PPKs experienced significant productivity increases. PPK Jitra achieved the
highest growth in the region, with an MPI of 1.5048, representing a 50.48% productivity
increase. PPK Sanglang followed closely with an MPI of 1.1974, indicating a 19.74% increase.
PPK Kodiang and PPK Tunjang also showed improvements, with MPIs of 1.0957 (9.57%) and
1.0386 (3.86%)), respectively. Conversely, some PPKs in Region Il saw declining productivity.
PPK Kubang Sepat recorded an MPI of 0.7945, indicating a 20.55% decline, the most
significant drop in the region. PPK Jerlun followed with an MPI of 0.8463, reflecting a 15.37%
decrease. Other PPKs experiencing declines included PPK Kerpan (MPI of 0.8759, -12.41%),
PPK Kepala Batas (MPI of 0.9332, -6.68%), and PPK Kuala Sungai (MPI of 0.9545, -4.55%).

In Region III (Pendang), productivity declines were observed in most PPKs. PPK Titi Haji
Idris recorded the steepest drop with an MPI of 0.7787, reflecting a 22.13% decrease. PPK
Tajar followed with an MPI of 0.7882, showing a 21.18% decline. PPK Pendang (MPI of
0.8589, -14.11%), PPK Hutan Kampong (MPI of 0.9362, -6.38%), PPK Kobah (MPI of 0.9386,
-6.14%), and PPK Alor Senibong (MPI of 1.0206, +2.06%) demonstrated small to moderate
productivity changes. In Region IV (Kota Sarang Semut), productivity declines were also
prevalent. PPK Permatang Buluh recorded an MPI of 0.8514, indicating a 14.86% productivity
decrease. PPK Bukit Besar (MPI of 0.9026, -9.74%), PPK Sungai Limau (MPI of 0.8940, -
10.60%), and PPK Kangkong (MPI of 0.9334, -6.66%) all showed notable declines. PPK
Pengkalan Kundur, representing Region IV, recorded an MPI of 1.0000, reflecting no change
in productivity. EC for PPK Jitra (EC of 1.1776) and PPK Sanglang (EC of 1.0747) showed the
highest efficiency improvements, indicating better resource optimization. However, PPKs such
as Kubang Sepat (EC of 0.9121) and Titi Haji Idris (EC of 0.9048) experienced significant
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efficiency declines, suggesting input mismanagement. TC assesses advancements in farming
techniques and production methods. PPK Jitra recorded the highest TC value of 1.2779,
reflecting strong technological improvements. However, PPKs such as Kubang Sepat (TC of
0.8711) and Titi Haji Idris (TC of 0.8606) experienced technological regressions, indicating a
lag in adopting modern agricultural practices. Overall, while some PPKs demonstrated
productivity growth, others faced efficiency and technological challenges that require strategic
intervention. Targeted investments in technology, training programs, and resource management
strategies could help mitigate these declines and improve overall productivity in the
underperforming regions.

Table 5: Malmquist Index Analysis from Season 1 (2021) to Season 2 (2021)

Region Pertubuhan Peladang Change Malmquist  Productivity
Kawasan (PPK) Efficiency Technological Index Interpretation
Region I A-1 Arau 1.0000 1.0000 1.0000 No Change
(Perlis) B-1 Kayang 0.9662 0.9497 0.9176 Decreasing
C-1 Kangar 1.0000 1.0000 1.0000 No Change
D-1 Tambun Tulang 1.0172 1.0259 1.0435 Increasing
E-1 Simpang Empat 0.9657 0.9490 0.9165 Decreasing
Region II A-IL Kodiang 1.0372 1.0564 1.0957 Increasing
(Jitra) B-1I Sanglang 1.0747 1.1141 1.1974 Increasing
C-II Kerpan 0.9484 0.9236 0.8759 Decreasing
D-1I Tunjang 1.0153 1.0230 1.0386 Increasing
E-1I Kubang Sepat 0.9121 0.8711 0.7945 Decreasing
F-II Jerlun 0.9354 0.9047 0.8463 Decreasing
G-11 Jitra 1.1776 1.2779 1.5048 Increasing
H-1I Kepala Batas 0.9727 0.9594 0.9332 Decreasing
I-1I Kuala Sungai 0.9815 0.9725 0.9545 Decreasing
Region 111 A-III  Hutan Kampong 0.9740 0.9612 0.9362 Decreasing
(Pendang) B-III  Alor Senibong 1.0082 1.0123 1.0206 Increasing
C-ll Tajar 0.9092 0.8669 0.7882 Decreasing
D-IIT  Titi Haji Idris 0.9048 0.8606 0.7787 Decreasing
E-III Kobah 0.9750 0.9627 0.9386 Decreasing
F-1II Pendang 0.9410 0.9128 0.8589 Decreasing
Region 1V A-IV  Batas Paip 0.9814 0.9722 0.9541 Decreasing
(Kota Sarang  B-IV ~ Pengkalan Kundur 1.0000 1.0000 1.0000 No Change
Semut) C-IV  Kangkong 0.9728 0.9595 0.9334 Decreasing
D-IV  Permatang Buluh 0.9377 0.9080 0.8514 Decreasing
E-IV  Bukit Besar 0.9599 0.9404 0.9026 Decreasing
F-IV Sungai Limau 0.9562 0.9350 0.8940 Decreasing
G-IV Guar Chempedak 0.9887 0.9831 0.9720 Decreasing

The Malmquist Index values presented in Table 6 illustrate productivity changes between
Season 2 2021 and Season 1 _2022. For Region I (Perlis), PPK Tambun Tulang recorded an
MPI of 1.0762, indicating a 7.62% productivity increase. Meanwhile, Simpang Empat showed
a slight improvement, with an MPI of 1.0514. Kayang recorded a substantial productivity gain,
with an MPI of 1.4774. PPK Arau and Kangar showed no change, both with an MPI of 1.0000.

In Region II (Jitra), Kubang Sepat recorded an MPI of 1.298, indicating a 29.85% increase,
the highest in the region. Kepala Batas also showed increases, with MPIs of 1.0507, Kerpan
with MPI 1.1642 and Jerlun 1.1648 respectively, followed by Tunjang 1.1472. However, other
PPKSs experienced declines. PPK Kodiang recorded an MPI of 0.9978, reflecting a significant
productivity drop. Jitra showed the most substantial decline with an MPI of 0.7319, indicating
a 26.81% productivity decrease. Other PPKs, including Sanglang (0.9417) and Kuala Sungai
(0.9532) also experienced reductions.
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In Region III (Pendang), PPK Tajar recorded an MPI of 1.0749, reflecting a slight
increasing, Kobah (1.2406) and Pendang (1.0068). PPK Hutan Kampong had the steepest
decline in the region, with an MPI of 0.6543 (-34.57%). Other PPKs, such as Alor Senibong
(0.7852) and Titi Haji Idris (0.8165), also exhibited productivity losses.

In Region IV (Kota Sarang Semut), some PPKs showed positive changes. PPK Batas Paip
recorded the highest increase in productivity, with an MPI of 1.2134, marking a 21.34%
improvement. Kangkong also experienced a strong increase, with an MPI of 1.2777. Bukit
Besar (1.2576), Permatang Buluh (1.221) and Sungai Limau (1.0839) also increase. Guar
Chempedak recorded an MPI of 0.9828, reflecting a slight decrease in productivity. Pengkalan
Kundur losses productivity with MPI , 0.8543.

Table 6: Malmquist Index Analysis from Season 2 (2021) to Season 1 (2022)

Region Pertubuhan Peladang Kawasan Change Malmquist ~ Productivity
(PPK) Efficiency  Technological Index Interpretation
Region I A-1 Arau 1.0000 1.0000 1.0000 No Change
(Perlis) B-1 Kayang 1.1690 1.2639 1.4774 Increasing
C-1 Kangar 1.0000 1.0000 1.0000 No Change
D-1 Tambun Tulang 1.0298 1.0450 1.0762 Increasing
E-1 Simpang Empat 1.0203 1.0305 1.0514 Increasing
Region 11 A-ll Kodiang 0.9991 0.9987 0.9978 Decreasing
(Jitra) B-1I Sanglang 0.9763 0.9646 0.9417 Decreasing
C-II Kerpan 1.0627 1.0955 1.1642 Increasing
D-II Tunjang 1.0565 1.0859 1.1472 Increasing
E-II Kubang Sepat 1.1101 1.1697 1.2985 Increasing
F-II Jerlun 1.0629 1.0958 1.1648 Increasing
G-l Jitra 0.8826 0.8292 0.7319 Decreasing
H-1I Kepala Batas 1.0200 1.0301 1.0507 Increasing
I-1I Kuala Sungai 0.9810 0.9716 0.9532 Decreasing
Region II1 A-II1 Hutan Kampong 0.8439 0.7753 0.6543 Decreasing
(Pendang) B-1II Alor Senibong 0.9078 0.8649 0.7852 Decreasing
C-111 Tajar 1.0293 1.0443 1.0749 Increasing
D-III Titi Haji Idris 0.9221 0.8855 0.8165 Decreasing
E-III Kobah 1.0901 1.1381 1.2406 Increasing
F-11I Pendang 1.0027 1.0041 1.0068 Increasing
Region IV A-IV Batas Paip 1.0805 1.1231 1.2134 Increasing
(Kota B-IV Pengkalan Kundur 0.9390 0.9099 0.8543 Decreasing
Sarang C-Iv Kangkong 1.1030 1.1584 1.2777 Increasing
Semut) D-IV Permatang Buluh 1.0471 1.0715 1.1221 Increasing
E-IV Bukit Besar 1.0960 1.1474 1.2576 Increasing
F-1V Sungai Limau 1.0328 1.0495 1.0839 Increasing
G-IV Guar Chempedak 0.9931 0.9897 0.9828 Decreasing

PPKs with EC values greater than 1 improved efficiency, while values below 1 indicate
declines. For example, Tunjang (1.0565) and Kayang (1.1690) showed increased efficiency,
while Jitra (0.8826) and Hutan Kampong (0.8439) faced efficiency drops. TC reflects
advancements in production techniques. PPKs such as Kubang Sepat (1.1697) and Kangkong
(1.1584) showed strong technological improvements. However, Jitra (0.8292) and Hutan
Kampong (0.7753) faced technological regressions, indicating a lag in adopting modern
agricultural methods. The overall analysis shows that certain PPKs, particularly in Regions II
and III, need to focus on improving both efficiency and technological adoption. While Batas
Paip and Kangkong demonstrated notable productivity increases, PPKs like Jitra and Hutan
Kampong require targeted interventions to address efficiency losses and outdated farming
techniques.
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To enhance the understanding of the MPI results presented earlier, Figure 3 visualizes the
MPI trends of six selected PPKs across the three phases. This line chart provides a clear view
of temporal changes in productivity performance over time. An MPI value greater than 1
indicates an increase in productivity, a value less than 1 reflects a decline, and a value equal to
1 denotes no change in productivity. This interpretation helps contextualize the trends observed
in Figure 3. Notably, Titi Haji Idris exhibited a very high MPI value in Phase 1 (MPI 1)
(2.8921) but experienced a significant decline in the following phases. In contrast, Arau
maintained a stable MPI of 1.0000 across all phases, indicating consistent productivity. Other
PPKs, such as Kerpan and Simpang Empat, showed moderate fluctuations over the period.The
line chart improves the readability of MPI dynamics compared to dense tabular presentation.

Trend of MPI Values Across Three Phases for Six Selected PPKs
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Figure 3: Trend of MPI values across three phases for six selected PPKs

3.3. Discussion of results

In the context of MADA, paddy production follows a structured biannual planting cycle: Season
1 typically runs from March to July (the drier season), while Season 2 spans from August to
February (the wetter or monsoon-influenced season). This seasonal distinction is crucial when
interpreting MPI results, as climatic variability particularly heavy rainfall and flooding during
Season 2 can significantly affect planting schedules, productivity, and technological adoption.
MPI Phase 1 (Season 2, 2020 — Season 1, 2021) revealed mixed performance across PPKs,
likely influenced by the monsoon season which often disrupts the planting and harvesting
cycles. Several PPKs experienced notable declines in productivity, presumably due to delays
in replanting and adverse weather conditions. For instance, PPK Tambun Tulang recorded an
MPI of 0.9475, indicating an overall decline in productivity, primarily driven by a decrease in
technological change (TC = 0.9682). Other PPKs, such as Kodiang, Kubang Sepat, and Jerlun,
also recorded MPI values below 1, reflecting similar downward trends. These findings support
the argument that agricultural efficiency is highly sensitive to seasonal variations and external
shocks (Arslan ef al. 2017).
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From a technological change (TC) perspective, the MPI Phase 1 results indicate that many
PPKs experienced only marginal improvements or even declines in TC values. This suggests
that productivity changes during this period were not predominantly driven by technological
advancements, but rather influenced by changes in efficiency or external operational
constraints. On average, TC values for most PPKs hovered around or fell below 1.000,
reflecting either technological stagnation or regression. This pattern points to a limited adoption
of new innovations or a lack of significant technological upgrading in paddy farming practices
between Season 2, 2020 and Season 1, 2021. Notably, this period coincided with the onset of
the COVID-19 pandemic, which plausibly disrupted the supply chain for modern agricultural
inputs, limited access to machinery, and restricted the availability of extension and advisory
services. As a result, the low TC values observed may reflect a critical juncture where
technological progress was significantly constrained, despite the strategic importance of
innovation in driving long-term productivity improvements.

In addition to weather-related disruptions, it is important to acknowledge the potential
impact of the COVID-19 pandemic during MPI Phase 1 (2020-2021). Although paddy farming
was classified as an essential activity, the implementation of movement control orders (MCOs)
and associated restrictions may have affected key aspects of rice production. These include
labor availability, timeliness of input supply (such as fertilizers and pesticides), machinery
operations, and field supervision. Such disruptions could have contributed to delays in
replanting and inconsistent management practices across some PPKs, especially those with
limited operational flexibility. Government interventions, including exemptions for agriculture
and financial support schemes, helped mitigate severe impacts, but localized inefficiencies may
still have emerged as a result of pandemic-induced constraints. Therefore, the decline in
productivity observed in certain PPKs during this phase may not only be attributed to weather,
but also to the indirect effects of the pandemic.

Nonetheless, this phase also saw notable improvements among certain PPKs, particularly
those that likely had better access to technology and infrastructure. For example, PPK Simpang
Empat recorded a high MPI of 1.4751 with a TC of 1.2627, suggesting a significant productivity
gain due to the implementation of new technologies. Similarly, PPK Titi Haji Idris experienced
a substantial surge in productivity (MPI = 2.8921), most likely attributed to a major influx of
technology or the adoption of new mechanization methods in paddy production management.
According to Wagqas et al. (2024), productivity growth is often driven by advancements in
technology, especially in sectors reliant on natural conditions such as agriculture.

MPI Phase 2 (Season 1, 2021 — Season 2, 2021), a majority of PPKs showed drop in
productivity, indicating that the implementation of modern agricultural technologies was either
not effectively sustained or faced challenges during adoption, possibly due to limited technical
capacity, insufficient support systems, or unfavorable weather conditions affecting field
operations. Among the PPKs recorded declining performance in this phase were Kayang (MPI
=0.9176, TC = 0.9497), Simpang Empat (MPI = 0.9165, TC = 0.9490), Kobah (MPI = 0.9386,
TC =0.9627), and Hutan Kampong (MPI =0.9362, TC=0.9612). This suggests the presence of
a capability gap among PPKs in effectively adopting and applying technology, possibly due to
differences in financial resources, technical skills, or management capacity (Latruffe et al.
2012). Tambun Tulang (MPI = 1.0435, TC = 1.0259), Kodiang (MPI = 1.0957, TC = 1.0564),
Sanglang (MPI = 1.1974, TC = 1.1141), Tunjang (MPI = 1.0386, TC = 1.0230), Jitra (MPI =
1.5048, TC = 1.2779), and Alor Senibong (MPI = 1.0206, TC = 1.0123) recorded notable
improvements in performance. The surge in their TC values suggests that these PPKs had
actively adopted mechanization, precision fertilization, and more efficient crop monitoring
systems. As noted by Sanyaolu and Sadowski (2024), the use of precision agriculture tools can
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significantly boost technical efficiency and support sustainable productivity growth. Although
Season 1 typically offers drier conditions, MPI Phase 2 results suggest that internal factors such
as technology fatigue and insufficient adoption mechanisms played a more dominant role in the
observed declines. Conversely, in Season 2 of 2021, weather volatility may have again posed
challenges, although selected PPKs demonstrated resilience through adaptive practices.

MPI Phase 3 (Season 2, 2021 — Season 1, 2022) served as a critical phase for evaluating the
sustainability of the productivity gains achieved in the previous phase. Overall, this phase
witnessed a slight recovery in productivity levels among most PPKs. For instance, PPK Kayang
recorded a significant improvement in MPI 3 (1.4774) compared to its earlier decline to 0.9176
in MPI 2. Similar increase were also observed for PPK Jerlun (from 0.8463 to 1.1648) and
Kubang Sepat (from 0.7945 to 1.2985). There were PPKs such as Tambun Tulang that showed
continuous improvement from MPI 1 to MPI 3, suggesting that consistent management efforts
and gradual technological adoption had a lasting positive impact (Mehboob & Harris 2023).

From a longitudinal perspective, productivity trends across the MPI phases varied
significantly among the PPKs. For example, PPK Kayang experienced a notable decline during
the second phase, followed by a recovery in the third phase, an indication of possible
inconsistencies in investment or an unsustainable technology implementation strategy. In
contrast, PPK Tambun Tulang exhibited steady recovery and continuous improvement across
all phases, likely attributable to strengthened management and systematic technological
adoption. PPK Kerpan, meanwhile, displayed fluctuating performance, with gains in the first
and third phases but a decline in the second, suggesting challenges in maintaining consistent
best practices. When contextualized within the national scenario, the observed trends among the
PPKSs align with Malaysia's fluctuating paddy production over the study period. According to
Department of Statistics Malaysia (DOSM), annual paddy production showed marginal
increases in 2020, followed by a slight dip in 2021, largely due to climate variability, disruptions
from the COVID-19 pandemic, and rising input costs. These macro-level challenges parallel
the decline in productivity observed among many PPKs in MPI Phase 2, where operational
inefficiencies, limited labor mobility, and delayed input distribution were reported.

Moreover, the contrasting performance among PPKs can also be attributed to localized
differences in agro-ecological conditions, infrastructure, and institutional support. PPKs that
consistently improved, such as Tambun Tulang and Alor Senibong, may have benefited from
more reliable irrigation infrastructure, stronger leadership, or better access to mechanization.
Conversely, PPKs with declining or inconsistent performance, such as Kerpan or Simpang
Empat, may have faced periodic flooding, pest outbreaks, or delays in technology adoption.
These findings underscore the importance of customizing support mechanisms to address both
national and local-level production constraints. These findings highlight the critical need for
PPK management to engage in continuous and strategically planned investments in agricultural
technology to ensure long-term productivity gains. Such investments should be aligned with
each PPK’s operational capacity and tailored to address specific inefficiencies identified
through performance monitoring. In addition to financial investment, robust training and
capacity-building initiatives are essential to equip management and field personnel with the
skills required to implement, monitor, and adapt technological solutions effectively.

Equally important is the role of supportive agricultural policy. Policymakers should develop
frameworks that offer targeted incentives, such as performance-based grants, access to low-
interest financing, and technical advisory services, to reward PPKs demonstrating consistent
progress. These mechanisms would not only encourage sustained improvements but also
promote a culture of innovation and accountability within the sector. Ultimately, a coordinated
approach involving strategic investment, human capital development, and policy support is vital
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for strengthening the resilience, efficiency, and sustainability of Malaysia’s paddy production
system. Similar policy recommendations have been proposed by Mehboob and Harris (2023),
emphasizing that tailored incentive schemes and extension services are pivotal in sustaining
technology-driven gains in agricultural systems.

Overall, the integration of DEA-based efficiency scores (EC) and the Malmquist Index
framework (MPI and TC) provides a more nuanced understanding of productivity dynamics
among the PPKs. The results suggest that in some cases, better management and more efficient
use of existing resources contributed more to productivity improvements than technological
advancement. Conversely, when technological change was evident but not matched with
efficiency gains, it highlights the importance of effective implementation at the field level. This
interaction reinforces the need to not only introduce innovation but also ensure its proper
absorption and utilization by on-ground management.

4. Conclusion and Future Work

This study applied DEA alongside the Malmquist Index (MPI) to evaluate the productivity
performance of PPKs across multiple planting seasons. The findings revealed substantial
variations in efficiency and technological progress, with some PPKs achieving notable
productivity improvements while others remained stagnant. The decomposition of MPI into
efficiency and technological change provided critical insights into the drivers of productivity,
highlighting the importance of both resource utilization and technological advancement.

While the DEA-MPI framework effectively captured temporal shifts in productivity, future
studies should consider integrating Stochastic Frontier Analysis (SFA) to enhance the
robustness of efficiency measurement by accounting for statistical noise and external shocks.
SFA enables a clearer distinction between inefficiency and random fluctuations caused by
factors such as climate variability, policy shifts, and market conditions, leading to a more
accurate estimation of the true production frontier. Moreover, incorporating copula-based
modeling can offer a deeper understanding of the dependence structure between efficiency
scores, technological change, and external risk factors. By modeling their joint distribution,
copulas can reveal nonlinear dependencies often overlooked by traditional methods. This is
particularly valuable in analyzing the compounded effects of risks such as fertilizer price
volatility, labor shortages, and adverse weather on PPK performance.

Future research should conduct comparative analyses between DEA-MPI and SFA
outcomes to better understand the underlying drivers of productivity variations. Copula-based
approaches may also help assess how different PPKs respond to correlated economic and
environmental shocks, supporting more resilient and targeted policy interventions. Lastly,
expanding the dataset to encompass multiple years and integrating machine learning techniques
within the DEA-SFA-Copula framework may enhance predictive accuracy. Investigating the
impact of digital agriculture and precision farming technologies is also crucial to understanding
their role in boosting productivity. These advanced approaches can provide policymakers with
strategic insights for optimizing Malaysia’s paddy production, contributing to sustainable
growth and national food security.
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