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ABSTRACT  

Paddy production is a vital sector in Malaysia’s agricultural economy, with Pertubuhan 

Peladang Kawasan (PPKs) under the Muda Agricultural Development Authority (MADA) 

playing a key role in sustaining yields and sector resilience. This study evaluates the efficiency 

and productivity changes of 27 PPKs over four planting seasons (Season 2, 2020 – Season 1, 

2022) using output-oriented Data Envelopment Analysis (DEA) with the BCC model and the 

Malmquist Productivity Index (MPI). DEA results show an average efficiency score of 0.892 

(89.2%), with PPK Arau and PPK Kangar achieving full efficiency consistently. However, 

92.6% of the PPKs experienced inefficiency in at least one season, with the lowest score 

recorded in Season 2, 2020. The MPI analysis assessed productivity changes across three 

phases: Season 2, 2020 – Season 1, 2021; Season 1, 2021 – Season 2, 2021; and Season 2, 2021 

– Season 1, 2022. The findings revealed a mixed performance trend, where several PPKs 

experienced productivity growth while others saw declines. Titi Haji Idris recorded the highest 

MPI score (2.8921), indicating strong productivity improvement overall, although a temporary 

drop was observed in Phase 2 (0.7787) before recovering. The lowest score was recorded by 

Hutan Kampung (0.6543), whereas Arau maintained an MPI score close to 1.000 across all three 

phases, indicating stable productivity performance. These findings highlight the need for 

targeted interventions, efficient resource allocation, and the adoption of technology. 

Benchmarking against high-performing PPKs can support strategic planning and strengthen the 

sustainability of national paddy production. 
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ABSTRAK  

Pengeluaran padi merupakan sektor penting dalam ekonomi pertanian Malaysia, dengan 

Pertubuhan Peladang Kawasan (PPK) di bawah Lembaga Kemajuan Pertanian Muda (MADA) 

memainkan peranan utama dalam mengekalkan hasil dan kelestarian sektor ini. Kajian ini 

menilai kecekapan dan perubahan produktiviti 27 PPK sepanjang empat musim penanaman 

(Musim 2, 2020 – Musim 1, 2022) menggunakan Analisis Penyampulan Data (APD) 

berorientasikan output dengan model BCC serta Indeks Produktiviti Malmquist (MPI). Dapatan 

APD menunjukkan purata skor kecekapan sebanyak 0.892 (89.2%), dengan PPK Arau dan 

Kangar mencapai kecekapan penuh secara konsisten. Namun, 92.6% daripada PPK mencatatkan 

ketidakefisienan sekurang-kurangnya dalam satu musim, dengan skor terendah direkodkan pada 

Musim 2, 2020. Analisis MPI pula menilai perubahan produktiviti merentasi tiga fasa: Musim 

2 2020 – Musim 1 2021, Musim 1 2021 – Musim 2 2021, dan Musim 2 2021 – Musim 1 2022. 

Hasil menunjukkan corak prestasi yang bercampur, dengan beberapa PPK menunjukkan 

peningkatan produktiviti manakala yang lain mengalami penurunan. Titi Haji Idris mencatatkan 

skor MPI tertinggi (2.8921), namun mengalami penurunan dalam Fasa 2 (0.7787) sebelum 

meningkat semula. Skor terendah direkodkan oleh Hutan Kampung (0.6543), manakala Arau 

mengekalkan skor sekitar 1.000 dalam ketiga-tiga fasa, menunjukkan kestabilan prestasi. 

Dapatan ini menekankan keperluan kepada intervensi bersasar, pengagihan sumber secara 
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efisien dan penggunaan teknologi. Penandaarasan terhadap PPK berprestasi tinggi boleh 

menyokong perancangan strategik dan memperkukuh kelestarian pengeluaran padi negara. 

Kata kunci: kecekapan; APD; produktiviti; padi, Indeks Produktiviti Malmquist 

 

1. Introduction 

Paddy is a strategic and culturally significant crop in Malaysia, serving as the staple food for 

the majority of the population. Ensuring the sustainability and productivity of the paddy sector 

is critical not only for national food security but also for safeguarding the livelihoods of 

hundreds of thousands of farmers. The Malaysian government has consistently prioritized rice 

self-sufficiency, as reflected in successive policy frameworks such as the National Agro-Food 

Policy (2011–2020), the Eleventh Malaysia Plan (2016–2020), and most recently, the National 

Agro-Food Policy 2.0 (NAFP 2021–2030). These policies aim to enhance paddy production, 

modernize the agricultural sector, and reduce reliance on rice imports. 

Despite various efforts, Malaysia’s paddy production continues to face persistent structural 

challenges. These include fragmented land ownership, limited mechanization in certain regions, 

and an aging farming population. Climate-related factors have also become a growing concern. 

In a recent study, Firdaus et al. (2020) highlighted that climate variability particularly 

fluctuations in rainfall and temperature has significantly affected paddy yields in Peninsular 

Malaysia. Similar concerns have been documented across Southeast Asia, where Waqas et al. 

(2024) emphasized that climate change remains a major threat to agricultural productivity, 

especially for water-intensive crops such as paddy. 

The Muda Agricultural Development Authority (MADA) man ages one of the largest rice 

granary areas in Northern Malaysia and plays a crucial role in ensuring consistent production 

levels. In MADA, each Paddy Collection Center is operated by its respective Pertubuhan 

Peladang Kawasan (PPKs), a farmer organization that manages services at the local level. 

However, differences in productivity and operational efficiency among PPKs suggest that not 

all are utilizing their resources optimally or adopting modern technologies effectively (Zaibidi 

et al. 2016). Furthermore, while certain PPKs have started exploring precision farming 

technologies, widespread adoption remains limited. As noted by Hashim et al. (2024), smart 

farming approaches in Malaysian paddy fields are still at an early stage, facing constraints in 

infrastructure, awareness, and technical expertise. 

Paddy consumption in Malaysia has steadily increased over the last two decades due to 

population growth and changing dietary patterns. Between 2010 and 2020, domestic demand 

for rice rose from 2.69 million metric tons to 2.80 million metric tons, while paddy production 

remained relatively stagnant (Nixon 2024). This gap between demand and domestic production 

has resulted in increased dependence on imported rice to meet national consumption needs 

(Makhtar et al. 2022). Addressing inefficiencies in local paddy production, especially within 

high-impact areas such as MADA, is essential to reduce this dependency and strengthen 

national food security. 

Efficiency analysis in agriculture offers a way to assess the performance of production units 

relative to their peers. Data Envelopment Analysis (DEA) is a widely used non-parametric 

method for evaluating the relative efficiency of Decision-Making Units (DMUs) based on 

multiple inputs and outputs (Charnes et al. 1978). In the context of paddy production, DEA 

allows for the assessment of farm-level efficiency by comparing inputs such as land area, 

fertilizers, labor, and machinery against the paddy yield (Nandy & Singh 2021). The method 

helps identify underperforming units and provides benchmarks for improvement. 
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Beyond static efficiency, understanding how productivity evolves over time is essential. The 

Malmquist Productivity Index (MPI) enables the decomposition of total productivity change 

into two components: Efficiency Change (EC) and Technological Change (TC). This approach 

is particularly useful in agricultural studies where productivity is influenced by seasonal 

changes, policy interventions, and environmental factors (Al-Refaie et al. 2015; Liu et al. 

2024). For example, Liu et al. (2024) highlighted how input quality, institutional settings, and 

environmental changes significantly affect total factor productivity in food crop systems in 

China, which supports the relevance of MPI-based evaluations. 

DEA-MPI integration provides a dynamic view of performance that goes beyond a single-

point analysis. Previous studies in the Malaysian context have employed DEA and related 

methods to evaluate rice farm performance. Kalimuthu and Applanaidu (2024) analyzed the 

key determinants of paddy productivity in the MADA region, while Mailena et al. (2014) used 

a two-stage DEA approach with bootstrapping and Tobit regression. Zaibidi et al. (2018) 

compared SFA and DEA to assess environmental awareness among farmers. Nodin et al. (2021) 

applied DEA to compare efficiency in granary versus non-granary areas. However, these 

studies largely focus on single-season efficiency or cross-sectional analysis. Empirical 

applications of DEA combined with MPI to analyze productivity trends across multiple planting 

seasons, particularly at the PPK level within MADA, are still limited. 

This study seeks to fill that gap by evaluating the technical efficiency and productivity trends 

of 27 PPKs under MADA over four consecutive planting seasons (Season 2, 2020 – Season 1, 

2022). The findings will offer insights into whether these PPKs are improving or declining in 

performance over time and identify best practices that can be replicated to enhance rice 

production efficiency in Malaysia. Through this analysis, the study aims to support evidence 

based policymaking and contribute to long-term strategies that enhance food security and 

agricultural sustainability.  The remainder of the paper continues as follows: the data is outlined 

in Section 2, as well as the elaboration of the methodology. Section 3 provides the empirical 

findings and discussions, and lastly, Section 4 sums up the whole paper with conclusions and 

suggested future work. 

2. Materials and Methods 

2.1.  Data 

The following section provides a detailed explanation of the dataset used in this study. The 

research aims to evaluate and interpret the productivity of paddy production in the northern 

region of Malaysia, specifically within areas managed by the Muda Agricultural Development 

Authority (MADA). MADA is a federal agency responsible for managing irrigation 

infrastructure and paddy cultivation systems in the Muda region. The administrative and 

operational structure of MADA, including the distribution of Pertubuhan Peladang Kawasan 

(PPK) across its four main regions, is summarized in Table 1.  

This study focuses on four key regions under MADA’s supervision. Each of these regions 

consists of several PPK, which play a crucial role in the collection, storage, and management 

of harvested paddy before it is marketed or distributed to relevant parties. PPKs also serve as 

operational hubs that oversee paddy farming activities, including the provision of agricultural 

inputs, research on more efficient cultivation methods, and monitoring crop performance to 

ensure effective paddy production.  

In total, 27 PPKs operate under MADA’s administration to facilitate the smooth governance 

and management of the paddy farming sector in the states of Kedah and Perlis as shown in 

Table 1. 
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Table 1: List of PPK under the supervision of MADA 

 

To ensure efficient oversight, MADA has divided these areas into four main regions: 

• Region I – Kangar (State of Perlis) 

• Region II – Jitra (State of Kedah) 

• Region III – Pendang (State of Kedah) 

• Region IV – Kota Sarang Semut (State of Kedah) 

This regional division allows for a more systematic and comprehensive monitoring of paddy 

farming activities in these areas. Additionally, this organizational structure helps optimize 

agricultural resources and enhances the effectiveness of strategies aimed at improving paddy 

yields within MADA’s jurisdiction. 

2.2.  Input and output variables 

In efficiency analysis using DEA, the selection of appropriate input and output variables is 

crucial to ensure accurate and meaningful assessment of performance. In this study, the output-

oriented BCC model (Banker et al. 1984) is applied in the first stage to evaluate the efficiency 

scores of PPKs involved in paddy cultivation. A total of seven input variables and one output 

variable are considered, as summarized in Table 2. 

Table 2 presents the selected inputs and output for this study, along with their respective 

units. The output is the average yield, calculated by dividing the total paddy yield by the land 

area under cultivation. A higher average yield signifies better efficiency in paddy production. 

The first input is the number of farmers represents the labor force available for farming 

activities, including land preparation, planting, maintenance, and harvesting. The second input 

is land area. This input represents the amount of land allocated for growing paddy and plays a 

crucial role in determining overall production. A larger land area can potentially yield more 

Region PPK Pertubuhan Peladang Kawasan (PPK) Number of PPK 

Region I 

(Perlis) 

 

A-I Arau 

5 

B-I Kayang 

C-I Kangar 

D-I Tambun Tulang 

E-I Simpang Empat 

Region  II 

(Jitra) 

A-II Kodiang 

9 

B-II Sanglang 

C-II Kerpan 

D-II Tunjang 

E-II Kubang Sepat 

F-II Jerlun 

G-II Jitra 

H-II Kepala Batas 

I-II Kuala Sungai 

Region III 

(Pendang) 

A-III Hutan Kampong 

6 

B-III Alor Senibong 

C-III Tajar  

D-III Titi Haji Idris 

E-III Kobah 

F-III Pendang 

Region  IV 

(Kota Sarang Semut) 

A-IV Batas Paip 

7 

B-IV Pengkalan Kundur 

C-IV Kangkong 

D-IV Permatang Buluh 

E-IV Bukit Besar 

F-IV Sungai Limau  

G-IV Guar Chempedak 
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output.Third input is fertilizer (compound). It is used to enhance soil fertility and promote 

healthy paddy growth. The effectiveness of compound fertilizer depends on its proper 

application, ensuring balanced nutrient supply to improve crop yield and overall farming 

efficiency. The fouth input is Urea. It is widely used in paddy farming to promote healthy leaf 

and stem development, which is crucial for higher crop yields. Urea is highly soluble in water 

and must be applied correctly to prevent nutrient loss due to evaporation or leaching. Proper 

usage helps improve soil fertility and enhances the efficiency of paddy production. The fifth 

input, NPK fertilizer, is commonly used in paddy farming to ensure balanced nutrient supply, 

leading to improved productivity and efficiency in paddy cultivation.  

The sixth input is plowing costs, which include labor, machinery (such as tractors or plows), 

and fuel. Proper plowing helps improve soil aeration, water retention, and nutrient absorption, 

which are essential for healthy paddy growth and higher yields. Efficient management of 

plowing costs can contribute to better overall farm productivity. The last input is pesticide cost. 

This cost includes the price of chemical or biological pesticides, labor for application, and 

equipment used for spraying. Proper pesticide management is essential to prevent crop damage, 

ensure healthy plant growth, and maximize yield while minimizing environmental impact and 

unnecessary costs. 

Table 2: Description input output selected 

 Variable Units Description 

Output  Average yield Kg/Hektar 
Average yield refers to the average amount of paddy 

harvested per season.  

Inputs No of farmer Farmers Number of farmers refers to the total count of farmers 

involved in paddy cultivation within a specific area or 

organization.  

 Land area 
Hektar (Ha) 

Land area refers to the total size of the farmland used 

for paddy cultivation, usually measured in hectares. 

 Fertilizer 

(Compound) 

No. of Bags Fertilizer (Compound) refers to a type of fertilizer that 

contains a mix of essential nutrients, such as Nitrogen 

(N), Phosphorus (P), and Potassium (K), in a single 

formulation.  

 Urea No. of Bags Urea is a type of nitrogen-based fertilizer that provides 

an essential nutrient for plant growth.  

 NPK No. of Bags NPK fertilizer refers to a type of fertilizer that contains 

three primary nutrients essential for plant growth: 

Nitrogen (N); Phosphorus (P) and Potassium (K). 

 Plowing cost RM Plowing cost refers to the expenses incurred for land 

preparation before planting, including activities such 

as soil tilling, leveling, and breaking up hard soil.  

 Pesticide cost RM Pesticide cost refers to the expenses associated with 

purchasing and applying pesticides to protect paddy 

crops from pests, diseases, and weeds.  

 

 

The selection of input and output variables in this study is grounded in both theoretical 

relevance and empirical support from prior studies. Inputs such as labor (represented by the 

number of farmers), land, and fertilizer types are commonly identified as critical factors in 

agricultural efficiency analyses (Coelli et al. 2005; Mailena et al. 2014; Kalimuthu & 
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Applanaidu 2024). Additionally, cost-related inputs such as plowing and pesticide expenditure 

reflect operational investment and are often used in DEA studies to capture the resource 

intensity of crop production. The output variable, average yield per season serves as a 

standardized indicator of productive performance and is consistent with prior applications in 

paddy efficiency evaluations. While correlation analysis was not conducted, the inclusion of 

these variables was guided by their consistent appearance in literature and practical significance 

in the context of paddy production under MADA. 

2.3.  Methodology 

This study employs a two stage approach. The first stage focuses on the estimation of technical 

efficiency using DEA method. The second stage deals with the estimation of paddy productivity 

for three seasonal pair using MPI based on the estimated efficiency obtained in stage 1. Figure 

1 presents the research methodology of this study. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

 

 

 

 

 

 

 

 
 

Figure 1: Process flow of the research methodology 

 

 

The DEA model is first employed to calculate the technical efficiency of each PPK across 

four consecutive planting seasons. These seasonal efficiency scores are then utilized to compute 

the MPI, which captures productivity changes between seasons. This sequential application 

ensures a cohesive framework where DEA provides the efficiency baseline, and MPI reveals 

the dynamics over time. The findings are interpreted jointly to assess both static and dynamic 

performance of the paddy-producing PPKs. 
 

Stage I 

Data Collection 

Stage III 

Measure Malmquist Productivity Index 

(MPI: EC and TC) 

Input variable 

1. No. of farmer 

2. Land area 
3. Fertilizer (Compound) 

4. Urea 

5. NPK 
6. Flowing cost 

7. Pertecide cost 

Output variable 

Average yield 

Stage II 

Calculate efficiency score (DEA Model) 

Stage IV 

Interpretation and Comparison 

 (by PPK, season) 
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2.3.1 Data Envelopment Analysis (DEA) 

The DEA method, originally introduced by Farrell (1957), is a non-parametric linear 

programming technique designed to evaluate the efficiency performance of firms or 

organizations, commonly referred to as DMUs in DEA literature. The methodology was later 

extended by Charnes et al. (1978), who proposed an input-oriented model known as the 

Charnes, Cooper, and Rhodes (CCR) model. DEA has gained renewed attention in recent 

empirical research, particularly in agricultural and environmental efficiency assessments (Ben 

Mabrouk et al. 2022; Sanyaolu & Sadowski 2024). 

The CCR model assumes Constant Returns to Scale (CRS), implying that increases or 

reductions in inputs lead to proportional changes in outputs. Under this assumption, all DMUs 

are evaluated based on a common production frontier, and the resulting score reflects General 

Technical Efficiency (GTE) (Nunamaker 1985). While the CCR model provides a foundational 

framework, it may not fully capture operational realities when scale efficiency varies. To 

address this, Banker et al. (1984) introduced the BCC model, which relaxes the CRS 

assumption to accommodate Variable Returns to Scale (VRS). The BCC model allows for 

distinguishing whether a DMU operates under increasing, constant, or decreasing returns to 

scale, making it more suitable for assessing efficiency across heterogeneous units with diverse 

operational capacities. 

In this study, each DMU represents a Pertubuhan Peladang Kawasan (PPK). Each PPK 

utilizes multiple agricultural inputs, including the number of farmers, land area, fertilizer 

application (compound, urea, and NPK), plowing cost, and pesticide cost to produce a single 

output, namely the average paddy yield per season. The output-oriented BCC model is 

employed to assess how efficiently each PPK transforms inputs into output relative to a 

benchmark frontier formed by the most efficient units. This approach evaluates the maximum 

feasible output expansion each PPK could achieve while holding input levels constant. The 

following linear programming formulation is used to estimate the relative efficiency score: 
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where: 

 

ijx : Input i  used by PPK j . Examples of inputs include the number of farmers, land 

area, fertilizers (compound, urea, NPK), plowing cost, and pesticide cost. 

rjy : Output r produced by PPK j . In this study, the output refers to the average paddy 

yield per season. 

iox  : Value of input i  for the PPK being evaluated (target PPK).  
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roy : Value of output 𝑟 for the PPK being evaluated (target PPK).  

j  : Weight assigned to PPK j  in forming the reference set for the target PPK’s 

efficiency evaluation. 

n   :  Total number of PPKs evaluated. 

m   :  Number of inputs used in the model. 

s    :  Number of outputs used in the model. 

 
The variable   shows how much a PPK’s output can be increased using the same amount 

of input in order to become efficient. The best value,  , tells us the maximum increase possible. 

In simple terms, it reflects how many times the current output can be boosted to reach the level 

of the most efficient PPKs. To measure this, an output-oriented BCC model is used, which 

compares each PPK to the top-performing ones, known as the efficiency frontier. The Eq. (1) 

calculates  , which indicates the additional output a PPK needs to produce to become efficient. 

A higher   value means the PPK is further behind. However, to make the results easier to 

interpret, the efficiency score is normalized into a value between 0 and 1, denoted as  . This 

normalized score provides a clearer picture of efficiency: 

• A score of 1 means the PPK is fully efficient. 

• A score closer to 0 means there is still a lot of room for improvement. 

 

This method helps us easily identify which PPKs are performing well and which ones need to 

improve their output using the same level of input. 

2.3.2 Malmquest Productivity Index (MPI) 

The MPI is used to assess productivity changes in paddy production from one planting season 

to the next.  In the context of paddy farming, this includes the adoption of high-quality seed 

varieties, mechanization of land preparation and harvesting, use of modern irrigation systems, 

and improved agronomic practices. This is known as the "frontier shift," where technology 

enhances the maximum achievable output, even when input levels remain unchanged. By 

combining these two components, the MPI helps determine whether productivity improvements 

are due to better efficiency in managing available resources, technological progress, or both. 

Although the MPI is calculated using mathematical distance functions, the core idea is simple: 

it compares the actual paddy output to the potential output under optimal conditions and tracks 

changes in productivity across seasons whether from internal improvements by farmers or 

external advancements in agricultural technology (Coelli et al. 2005). To evaluate changes in 

productivity across paddy farming seasons, this study applies the MPI framework. As detailed 

in Section 2.3.1, efficiency scores for each PPK were derived using DEA model. The MPI 

captures productivity change by comparing distance functions (DEA efficiency scores) across 

two adjacent time periods using two alternative reference technologies. These comparisons are 

based on the following two approaches: 

 

Approach 1: Reference Technology from Season t  (Past Technology)-This method measures 

productivity change based on the DEA frontier from the initial season t : 

 
( )

( )
1

1 1(1)
,

MPI
,

t t

t

t t t

t

t t t

D x y

D x y
→ +

+ +
=           (2) 

 

where:  
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( ),t

t t tD x y  is the DEA score of the PPK in season t , evaluated using the technology 

available in season t . 

( )1 1,t

t t tD x y+ +  is the DEA score of the same PPK in season 1t + , evaluated using the 

same (past) technology from season t . 

 

Approach 2: Technology from Season 1t +  (Future Technology Reference)-Eq.(3) uses the 

DEA frontier from the subsequent season: 

 

  
( )

( )

1

1 1 1(2)

1 1

1

,
M

,

t

t t t

t t t

t t t

D x y

D x y

+

+ + +

→ + +

+

=  (3)  

 

where  

 

( )1

1 ,t

t t tD x y+

+ is the the DEA score of the PPK in season t , evaluated using the future 

technology frontier (season 1t + ). 

( )1

1 1 1,t

t t tD x y+

+ + +  is the the DEA score of the PPK in season 1t + , evaluated using the 

current technology frontier. 

 

Combined Approach-MPI (Geometric Mean): Eq. (2) and (3) represent two distinct 

perspectives for measuring productivity change between two time periods (seasons). Eq. (2) 

evaluates performance using the production technology from season t  as the reference, while 

Eq. (3) uses the technology from season 1t + . Each perspective reflects how a production unit 

performs relative to the respective period’s frontier. To provide a more balanced and 

comprehensive assessment of productivity change, both perspectives are combined using a 

geometric mean, as proposed by Färe et al. (1994). This leads to the formulation of the MPI, as 

shown in Eq. (4): 
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( )
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1
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1 1 1 1 1

1 1

1
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t t t t t t

t t t t
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D x y D x y

+

+ + + + +

→ + +

+

   
=      
    

 (4) 

 

Eq. (4) captures the overall productivity change across two periods, but it does not indicate 

whether the change is driven by improvements in efficiency or shifts in technology. To address 

this, the MPI can be further decomposed into two components: EC and TC. This decomposition 

provides deeper insight into the sources of productivity growth. The relationship is shown in 

Eq. (5): 

  

 MPI=EC×TC                                                   (5) 

 

The EC component reflects the ability of a production unit, such as a paddy-producing entity, 

to catch up to the best practice frontier over time. It compares how efficiently inputs are used 

to produce outputs across two periods (seasons) and is calculated as: 

 

 
( )

( )

1

1 1 1,
EC
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t
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t
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+ + +
=                                                  (6) 
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The TC component captures shifts in the production frontier itself, which represent 

technological advancements or innovations in farming practices. It is measured as the geometric 

mean of the relative shifts in distance functions across periods, as shown in below: 

 

 
( )

( )

( )

( )

1
21

1 1

1 1

1 1 1 1

, ,
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, ,

t t

t t t t t t

t t
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+

+ +
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+ + + +

   
=      
    

 (7)   

  

Through this decomposition, it becomes easier to understand whether the observed 

improvements in paddy productivity are due to farmers becoming more efficient in using 

available inputs such as land, fertilizers, seeds, and labor or due to the adoption of better 

agricultural technologies, such as improved seed varieties, mechanization, or more effective 

irrigation systems. According to Färe et al. (1994), the MPI offers several advantages over other 

productivity measurement approaches. First, it only requires quantity data on inputs and 

outputs, without the need for price information, which is often unavailable, especially in 

agricultural settings. Second, since MPI is based on linear programming, it does not require any 

assumption about the underlying production function, and therefore avoids the complications 

related to error terms in statistical models. Third, it does not assume that producers are always 

optimizing their behavior, such as maximizing output or profit. Most importantly, the MPI 

allows us to break down productivity change into two meaningful components efficiency 

change and technical change, giving valuable insight into both the internal improvements made 

by farmers and the external shifts in technology over time. 

3. Results and Discussions  

3.1.  Efficiency analysis 

Based on the DEA-BCC results shown in Table 3, PPKs with a score of 1.0000 are considered 

fully efficient, while those with scores below 1.0000 are classified as inefficient. The analysis 

of 27 PPKs across four seasons; Season 2 (2020), Season 1 (2021), Season 2 (2021), and Season 

1 (2022) reveals an overall average efficiency score of 0.892 (or 89.2%). This indicates a 

relatively high level of efficiency, though there remains room for improvement in several PPKs. 

Among the most efficient PPKs, Arau and Kangar from Region I consistently achieved a perfect 

score of 1.0000 in all seasons, demonstrating sustained operational excellence. These two PPKs 

can serve as benchmarks for other PPKs aiming to enhance their efficiency. However, 92.6% 

(25 out of 27 PPKs) exhibited inefficiency in at least one season, underscoring the widespread 

need for performance optimization in resource management and operational practices. 

Examining efficiency trends across seasons, Season 2 (2020) recorded the lowest efficiency 

levels, with many PPKs scoring below 0.90. A slight improvement was observed in Season 1 

(2021), reflecting adjustments and enhancements in agricultural practices. In Season 2 (2021), 

efficiency remained relatively stable, with some PPKs showing minor improvements. In Season 

1 (2022), several PPKs demonstrated significant efficiency gains, yet disparities between highly 

efficient and inefficient units persisted. In Region IV, Pengkalan Kundur maintained full 

efficiency for three consecutive seasons (2 (2020), 1 (2021), and 2 (2021)) but experienced a 

slight decline to 0.9390 in 1 (2022). Similarly, Kangkong and Bukit Besar exhibited steady 

improvements, reaching full efficiency in the final season. 
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Conversely, some PPKs consistently struggled with inefficiency. Titi Haji Idris (Region III) 

had the lowest efficiency scores, ranging from 0.5173 in Season 2 (2020) to 0.6601 in Season 

1 (2022), showing minimal improvement. Alor Senibong in the same region remained 

inefficient, with scores fluctuating between 0.6974 and 0.8190. Likewise, Guar Chempedak 

(Region IV) consistently scored below 0.88, indicating ongoing inefficiencies, while Tunjang 

(Region II) failed to surpass 0.90, suggesting persistent operational challenges. Despite these 

inefficiencies, several PPKs demonstrated positive efficiency trends. Kayang (Region I) 

improved significantly from 0.8453 in Season 2 (2021) to 0.9881 in Season 1 (2022), nearing 

full efficiency. In Region II, Kerpan performed consistently well, reaching 0.9794 in the final 

season. A similar trend was observed in Region IV, where Kangkong and Bukit Besar achieved 

full efficiency in Season 1 (2022) following steady progress. 

Table 3: Efficiency score for season from Season 2 (2020) to Season 1 (2022) 

 

Overall, Region I recorded the highest proportion of efficient PPKs, with Arau and Kangar 

maintaining full efficiency throughout the study period. Regions II, III, and IV exhibited mixed 

performances, with persistent inefficiencies in several PPKs. Notably, underperforming PPKs 

such as Titi Haji Idris, Alor Senibong, and Guar Chempedak require targeted interventions to 

enhance efficiency.  

Meanwhile, high-performing PPKs like Arau, Kangar, and Pengkalan Kundur can serve as 

benchmarks for best practices, offering valuable insights into strategies for improving 

efficiency among underperforming units. While the overall efficiency of PPKs remains 

relatively high, the substantial performance gap between the most and least efficient PPKs 

Region Pertubuhan Peladang 

Kawasan  (PPK) 

Season  

2 (2020) 1 (2021) 2 (2021) 1(2022) 

Region I 

(Perlis) 

 

A-I Arau 1.0000 1.0000 1.0000 1.0000 

B-I Kayang 0.8636 0.8749 0.8453 0.9881 

C-I Kangar 1.0000 1.0000 1.0000 1.0000 

D-I Tambun Tulang 0.9083 0.8889 0.9042 0.9311 

E-I Simpang Empat 0.8000 0.9346 0.9025 0.9208 

Region  II 

(Jitra) 

A-II Kodiang 0.9042 0.8547 0.8865 0.8857 

B-II Sanglang 0.7981 0.8375 0.9001 0.8787 

C-II Kerpan 0.9066 0.9718 0.9217 0.9794 

D-II Tunjang 0.7680 0.8354 0.8482 0.8961 

E-II Kubang Sepat 1.0000 0.9542 0.8703 0.9662 

F-II Jerlun 0.9814 0.9588 0.8969 0.9533 

G-II Jitra 0.7937 0.7734 0.9107 0.8039 

H-II Kepala Batas 0.8913 0.8757 0.8518 0.8688 

I-II Kuala Sungai 0.8467 0.9398 0.9225 0.9050 

Region III 

(Pendang) 

A-III Hutan Kampong 0.8058 0.9542 0.9294 0.7843 

B-III Alor Senibong 0.6974 0.8123 0.8190 0.7435 

C-III Tajar  0.7968 0.9794 0.8905 0.9166 

D-III Titi Haji Idris 0.5173 0.7911 0.7158 0.6601 

E-III Kobah 0.7148 0.8562 0.8347 0.9099 

F-III Pendang 0.8985 0.9653 0.9083 0.9107 

Region  IV 

(Kota Sarang 

Semut) 

A-IV Batas Paip 0.8842 0.9033 0.8865 0.9579 

B-IV Pengkalan Kundur 1.0000 1.0000 1.0000 0.9390 

C-IV Kangkong 0.8757 0.9320 0.9066 1.0000 

D-IV Permatang Buluh 0.8511 0.9234 0.8658 0.9066 

E-IV Bukit Besar 0.9107 0.9506 0.9124 1.0000 

F-IV Sungai Limau  0.8163 0.9756 0.9328 0.9634 

G-IV Guar Chempedak 0.7800 0.8787 0.8688 0.8628 
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highlights the need for technological adoption, improved resource management, and tailored 

strategic interventions to achieve a more balanced and efficient agricultural sector.  
Figure 2 illustrates the efficiency score trends of selected PPKs (Titi Haji Idris, Arau, Jitra, 

Alor Senibong, and Kobah) across four consecutive planting seasons. Among these, Arau 

consistently recorded a perfect efficiency score (1.0000), making it a potential benchmark for 

best practices in resource utilization and operational management. In contrast, PPKs like Titi 

Haji Idris and Alor Senibong showed lower efficiency levels, although both exhibited 

improvements over time. The widening gap between top-performing and less efficient PPKs 

underscores the need for enhanced technological adoption, targeted interventions, and capacity 

building to ensure more balanced performance across the MADA region. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2: Temporal changes in efficiency scores among selected PPKs across 4 season 

 

3.2. Productivity analysis 

The MPI is a method used to measure changes in productivity over time, particularly in the 

context of production or efficiency. In this case, it is applied to evaluate the productivity 

performance of  PPK from one season to the next. The first seasonal pair covers the period from 

Season 2 (2020) to Season 1 (2021) (MPI_1); Season 1 (2021) to Season 2 (2021) (MPI_2); 

and the third period periods from Season 2 (2021) to Season 1 (2022).  

Three MPIs for each PPK have been calculated, providing insights into productivity changes 

for each PPK. The overall MPI value reflects total productivity changes, where productivity 

increases or decreases result from a combination of Efficiency Change (EC) and Technological 

Change (TC). Table 4 presents the analysis of the MPI by comparing relative efficiency in 

seasonal pairs. The MPI values shown illustrate productivity changes between two consecutive 

seasons, specifically from Season 2 (2020) to Season 1 (2021).  

An MPI value greater than 1 indicates an increase in productivity, while a value less than 1 

reflects a decline. For Region I (Perlis), PPK Kayang recorded an MPI of 1.0331, indicating a 

3.31% productivity increase, while PPK Simpang Empat showed an MPI of 1.4751, reflecting 

a 47.51% increase, the highest in the region. Conversely, PPK Tambun Tulang experienced a 
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productivity decline with an MPI of 0.9475, representing a 5.25% decrease. Both PPK Arau 

and PPK Kangar maintained an MPI of 1.0000, indicating no change in productivity.  

In Region II (Jitra), PPK Sanglang recorded an MPI of 1.1282, reflecting a 12.82% 

productivity increase, while PPKs Kerpan and Tunjang showed improvements of 18.96% and 

23.39%, respectively. The highest increase was observed in PPK Kuala Sungai, with an MPI of 

1.2980, marking a 29.80% productivity improvement. However, several PPKs experienced 

productivity declines. PPK Kodiang recorded an MPI of 0.8688, indicating a 13.12% decline, 

while Kubang Sepat had an MPI of 0.8894, showing an 11.06% decrease. Other PPKs, such as 

Jerlun (MPI: 0.9435), Jitra (MPI: 0.9374), and Kepala Batas (MPI: 0.9568), also showed 

productivity declines of 5.65%, 6.26%, and 4.32%, respectively. 

Table 4: Malmquist Index Analysis from Season 2 (2020 ) to Season 1 (2021) 

 

Region III (Pendang) demonstrated significant productivity improvements across all PPKs. 

PPK Titi Haji Idris recorded the highest increase in the entire dataset, with an MPI of 2.8921, 

reflecting a 189.21% productivity surge. Other PPKs, such as Hutan Kampong (52.59%), Alor 

Senibong (46.46%), Tajar (67.51%), and Kobah (57.01%), also recorded substantial increases. 

PPK Pendang showed a more moderate improvement, with an MPI of 1.1963, indicating a 

19.63% increase. In Region IV (Kota Sarang Semut), several PPKs demonstrated productivity 

gains. PPK Sungai Limau recorded an MPI of 1.5615, reflecting a 56.15% improvement, 

followed by Guar Chempedak (MPI: 1.3470) with a 34.70% increase. Other PPKs, such as 

Permatang Buluh (22.61%) and Bukit Besar (11.29%), also experienced productivity growth. 

However, PPK Pengkalan Kundur recorded an MPI of 1.0000, indicating no change in 

productivity. 

Region 
Pertubuhan Peladang 

Kawasan  (PPK) 

Change  Malmquist 

Index 

Productivity 

Interpretation Efficiency Technological 

Region I 

(Perlis) 

 

A-I Arau 1.0000 1.0000 1.0000 No Change 

B-I Kayang 1.0131 1.0197 1.0331 Increasing 

C-I Kangar 1.0000 1.0000 1.0000 No Change 

D-I Tambun Tulang 0.9787 0.9682 0.9475 Decreasing 

E-I Simpang Empat 1.1682 1.2627 1.4751 Increasing 

Region  II 

(Jitra) 

A-II Kodiang 0.9453 0.9191 0.8688 Decreasing 

B-II Sanglang 1.0494 1.0750 1.1282 Increasing 

C-II Kerpan 1.0719 1.1098 1.1896 Increasing 

D-II Tunjang 1.0877 1.1344 1.2339 Increasing 

E-II Kubang Sepat 0.9542 0.9321 0.8894 Decreasing 

F-II Jerlun 0.9770 0.9657 0.9435 Decreasing 

G-II Jitra 0.9745 0.9620 0.9374 Decreasing 

H-II Kepala Batas 0.9825 0.9738 0.9568 Decreasing 

I-II Kuala Sungai 1.1100 1.1694 1.2980 Increasing 

Region III 

(Pendang) 

A-III Hutan Kampong 1.1842 1.2886 1.5259 Increasing 

B-III Alor Senibong 1.1649 1.2573 1.4646 Increasing 

C-III Tajar  1.2292 1.3628 1.6751 Increasing 

D-III Titi Haji Idris 1.5293 1.8912 2.8921 Increasing 

E-III Kobah 1.1978 1.3109 1.5701 Increasing 

F-III Pendang 1.0743 1.1135 1.1963 Increasing 

Region  IV 

(Kota Sarang 

Semut) 

A-IV Batas Paip 1.0217 1.0327 1.0551 Increasing 

B-IV Pengkalan Kundur 1.0000 1.0000 1.0000 No Change 

C-IV Kangkong 1.0643 1.0980 1.1686 Increasing 

D-IV Permatang Buluh 1.0849 1.1301 1.2261 Increasing 

E-IV Bukit Besar 1.0437 1.0663 1.1129 Increasing 

F-IV Sungai Limau  1.1951 1.3065 1.5615 Increasing 

G-IV Guar Chempedak 1.1265 1.1957 1.3470 Increasing 
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EC measures relative efficiency changes of a unit (PPK) from one season to the next, without 

accounting for technological advancements. An EC value greater than 1.0 signifies improved 

efficiency, while a value below 1.0 suggests efficiency declines. PPK Simpang Empat (EC: 

1.1682) in Region I and PPKs Kuala Sungai (EC: 1.1100) and Tunjang (EC: 1.0877) in Region 

II demonstrated improved efficiency. In Region III, PPK Titi Haji Idris exhibited the highest 

efficiency increase (EC: 1.5293), while PPKs Sungai Limau (EC: 1.1951) and Guar Chempedak 

(EC: 1.1265) led efficiency improvements in Region IV. Conversely, PPK Tambun Tulang 

(EC: 0.9787) and Kubang Sepat (EC: 0.9542) showed declining efficiency, suggesting input 

optimization challenges. TC measures advancements in production techniques. TC values 

above 1.0 indicate technological progress, while values below 1.0 signal technological 

regression. In Region I, PPK Simpang Empat (TC: 1.2627) recorded notable technological 

improvements, while PPK Tambun Tulang (TC: 0.9682) lagged. In Region II, PPK Kuala 

Sungai (TC: 1.1694) and Tunjang (TC: 1.1344) demonstrated significant technological 

advancements. Region III recorded the highest technological progress, particularly in PPK Titi 

Haji Idris (TC: 1.8912), while in Region IV, PPK Sungai Limau (TC: 1.3065) and Guar 

Chempedak (TC: 1.1957) showed considerable advancements. Overall, Regions III and IV 

demonstrated the most substantial productivity improvements, largely attributed to efficiency 

gains and technological progress. Conversely, productivity declines in Region II highlight 

challenges that require strategic interventions, such as improved management practices and 

technology adoption, to enhance overall performance. 

Table 5 shows the analysis of MPI from Season 1 (2021) to Season 2 (2021). In Region I 

(Perlis), PPK Tambun Tulang recorded a productivity increase with an MPI value of 1.0435. 

Tambun Tulang’s showed an increase of 4.35% in productivity. On the other hand, PPK 

Simpang Empat and PPK Kayang both showed slight declines with MPI values of 0.9165 and 

0.9176, respectively. PPK Arau and PPK Kangar showed no change in productivity, with MPI 

values remaining at 1.0000, indicating stable productivity during this period. In Region II 

(Jitra), several PPKs experienced significant productivity increases. PPK Jitra achieved the 

highest growth in the region, with an MPI of 1.5048, representing a 50.48% productivity 

increase. PPK Sanglang followed closely with an MPI of 1.1974, indicating a 19.74% increase. 

PPK Kodiang and PPK Tunjang also showed improvements, with MPIs of 1.0957 (9.57%) and 

1.0386 (3.86%), respectively. Conversely, some PPKs in Region II saw declining productivity. 

PPK Kubang Sepat recorded an MPI of 0.7945, indicating a 20.55% decline, the most 

significant drop in the region. PPK Jerlun followed with an MPI of 0.8463, reflecting a 15.37% 

decrease. Other PPKs experiencing declines included PPK Kerpan (MPI of 0.8759, -12.41%), 

PPK Kepala Batas (MPI of 0.9332, -6.68%), and PPK Kuala Sungai (MPI of 0.9545, -4.55%). 

In Region III (Pendang), productivity declines were observed in most PPKs. PPK Titi Haji 

Idris recorded the steepest drop with an MPI of 0.7787, reflecting a 22.13% decrease. PPK 

Tajar followed with an MPI of 0.7882, showing a 21.18% decline. PPK Pendang (MPI of 

0.8589, -14.11%), PPK Hutan Kampong (MPI of 0.9362, -6.38%), PPK Kobah (MPI of 0.9386, 

-6.14%), and PPK Alor Senibong (MPI of 1.0206, +2.06%) demonstrated small to moderate 

productivity changes. In Region IV (Kota Sarang Semut), productivity declines were also 

prevalent. PPK Permatang Buluh recorded an MPI of 0.8514, indicating a 14.86% productivity 

decrease. PPK Bukit Besar (MPI of 0.9026, -9.74%), PPK Sungai Limau (MPI of 0.8940, -

10.60%), and PPK Kangkong (MPI of 0.9334, -6.66%) all showed notable declines. PPK 

Pengkalan Kundur, representing Region IV, recorded an MPI of 1.0000, reflecting no change 

in productivity. EC for PPK Jitra (EC of 1.1776) and PPK Sanglang (EC of 1.0747) showed the 

highest efficiency improvements, indicating better resource optimization. However, PPKs such 

as Kubang Sepat (EC of 0.9121) and Titi Haji Idris (EC of 0.9048) experienced significant 
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efficiency declines, suggesting input mismanagement. TC assesses advancements in farming 

techniques and production methods. PPK Jitra recorded the highest TC value of 1.2779, 

reflecting strong technological improvements. However, PPKs such as Kubang Sepat (TC of 

0.8711) and Titi Haji Idris (TC of 0.8606) experienced technological regressions, indicating a 

lag in adopting modern agricultural practices. Overall, while some PPKs demonstrated 

productivity growth, others faced efficiency and technological challenges that require strategic 

intervention. Targeted investments in technology, training programs, and resource management 

strategies could help mitigate these declines and improve overall productivity in the 

underperforming regions. 

 Table 5: Malmquist Index Analysis from Season 1 (2021) to Season 2 (2021) 

 

The Malmquist Index values presented in Table 6 illustrate productivity changes between 

Season 2_2021 and Season 1_2022. For Region I (Perlis), PPK Tambun Tulang recorded an 

MPI of 1.0762, indicating a 7.62% productivity increase. Meanwhile, Simpang Empat showed 

a slight improvement, with an MPI of 1.0514. Kayang recorded a substantial productivity gain, 

with an MPI of 1.4774. PPK Arau and Kangar showed no change, both with an MPI of 1.0000. 

In Region II (Jitra), Kubang Sepat recorded an MPI of 1.298, indicating a 29.85% increase, 

the highest in the region. Kepala Batas also showed increases, with MPIs of 1.0507, Kerpan 

with MPI 1.1642 and Jerlun 1.1648 respectively, followed by Tunjang 1.1472. However, other 

PPKs experienced declines. PPK Kodiang recorded an MPI of 0.9978, reflecting a significant 

productivity drop. Jitra showed the most substantial decline with an MPI of 0.7319, indicating 

a 26.81% productivity decrease. Other PPKs, including Sanglang (0.9417) and Kuala Sungai 

(0.9532) also experienced reductions.  

Region Pertubuhan Peladang 

Kawasan (PPK) 

Change  Malmquist 

Index 

Productivity 

Interpretation Efficiency Technological 

Region I 

(Perlis) 

 

A-I Arau 1.0000 1.0000 1.0000  No Change 

B-I Kayang 0.9662 0.9497 0.9176 Decreasing 

C-I Kangar 1.0000 1.0000 1.0000 No Change 

D-I Tambun Tulang 1.0172 1.0259 1.0435 Increasing 

E-I Simpang Empat 0.9657 0.9490 0.9165 Decreasing 

Region  II 

(Jitra) 

A-II Kodiang 1.0372 1.0564 1.0957 Increasing 

B-II Sanglang 1.0747 1.1141 1.1974 Increasing 

C-II Kerpan 0.9484 0.9236 0.8759 Decreasing 

D-II Tunjang 1.0153 1.0230 1.0386 Increasing 

E-II Kubang Sepat 0.9121 0.8711 0.7945 Decreasing  

F-II Jerlun 0.9354 0.9047 0.8463 Decreasing 

G-II Jitra 1.1776 1.2779 1.5048 Increasing 

H-II Kepala Batas 0.9727 0.9594 0.9332 Decreasing 

I-II Kuala Sungai 0.9815 0.9725 0.9545 Decreasing 

Region III 

(Pendang) 

A-III Hutan Kampong 0.9740 0.9612 0.9362 Decreasing 

B-III Alor Senibong 1.0082 1.0123 1.0206 Increasing 

C-III Tajar  0.9092 0.8669 0.7882 Decreasing 

D-III Titi Haji Idris 0.9048 0.8606 0.7787 Decreasing 

E-III Kobah 0.9750 0.9627 0.9386 Decreasing 

F-III Pendang 0.9410 0.9128 0.8589 Decreasing 

Region  IV 

(Kota Sarang 

Semut) 

A-IV Batas Paip 0.9814 0.9722 0.9541 Decreasing 

B-IV Pengkalan Kundur 1.0000 1.0000 1.0000 No Change 

C-IV Kangkong 0.9728 0.9595 0.9334 Decreasing 

D-IV Permatang Buluh 0.9377 0.9080 0.8514 Decreasing 

E-IV Bukit Besar 0.9599 0.9404 0.9026 Decreasing 

F-IV Sungai Limau  0.9562 0.9350 0.8940 Decreasing 

G-IV Guar Chempedak 0.9887 0.9831 0.9720 Decreasing 
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In Region III (Pendang), PPK Tajar recorded an MPI of 1.0749, reflecting a slight 

increasing, Kobah (1.2406) and Pendang (1.0068). PPK Hutan Kampong had the steepest 

decline in the region, with an MPI of 0.6543 (-34.57%). Other PPKs, such as Alor Senibong 

(0.7852) and Titi Haji Idris (0.8165), also exhibited productivity losses. 

In Region IV (Kota Sarang Semut), some PPKs showed positive changes. PPK Batas Paip 

recorded the highest increase in productivity, with an MPI of 1.2134, marking a 21.34% 

improvement. Kangkong also experienced a strong increase, with an MPI of 1.2777. Bukit 

Besar (1.2576), Permatang Buluh (1.221) and Sungai Limau (1.0839) also increase. Guar 

Chempedak recorded an MPI of 0.9828, reflecting a slight decrease in productivity. Pengkalan 

Kundur losses productivity with MPI , 0.8543. 

Table 6: Malmquist Index Analysis from Season 2 (2021) to Season 1 (2022) 

 

PPKs with EC values greater than 1 improved efficiency, while values below 1 indicate 

declines. For example, Tunjang (1.0565) and Kayang (1.1690) showed increased efficiency, 

while Jitra (0.8826) and Hutan Kampong (0.8439) faced efficiency drops. TC reflects 

advancements in production techniques. PPKs such as Kubang Sepat (1.1697) and Kangkong 

(1.1584) showed strong technological improvements. However, Jitra (0.8292) and Hutan 

Kampong (0.7753) faced technological regressions, indicating a lag in adopting modern 

agricultural methods. The overall analysis shows that certain PPKs, particularly in Regions II 

and III, need to focus on improving both efficiency and technological adoption. While Batas 

Paip and Kangkong demonstrated notable productivity increases, PPKs like Jitra and Hutan 

Kampong require targeted interventions to address efficiency losses and outdated farming 

techniques.  

Region 
Pertubuhan Peladang Kawasan 

(PPK) 

Change  Malmquist 

Index 

Productivity 

Interpretation Efficiency Technological 

Region I 

(Perlis) 

 

A-I Arau 1.0000 1.0000 1.0000 No Change 

B-I Kayang 1.1690 1.2639 1.4774 Increasing 

C-I Kangar 1.0000 1.0000 1.0000 No Change 

D-I Tambun Tulang 1.0298 1.0450 1.0762 Increasing 

E-I Simpang Empat 1.0203 1.0305 1.0514 Increasing 

Region  II 

(Jitra) 

A-II Kodiang 0.9991 0.9987 0.9978 Decreasing 

B-II Sanglang 0.9763 0.9646 0.9417 Decreasing 

C-II Kerpan 1.0627 1.0955 1.1642 Increasing 

D-II Tunjang 1.0565 1.0859 1.1472 Increasing 

E-II Kubang Sepat 1.1101 1.1697 1.2985 Increasing 

F-II Jerlun 1.0629 1.0958 1.1648 Increasing 

G-II Jitra 0.8826 0.8292 0.7319 Decreasing 

H-II Kepala Batas 1.0200 1.0301 1.0507 Increasing 

I-II Kuala Sungai 0.9810 0.9716 0.9532 Decreasing 

Region III 

(Pendang) 

A-III Hutan Kampong 0.8439 0.7753 0.6543 Decreasing 

B-III Alor Senibong 0.9078 0.8649 0.7852 Decreasing 

C-III Tajar  1.0293 1.0443 1.0749 Increasing 

D-III Titi Haji Idris 0.9221 0.8855 0.8165 Decreasing 

E-III Kobah 1.0901 1.1381 1.2406 Increasing 

F-III Pendang 1.0027 1.0041 1.0068 Increasing 

Region  IV 

(Kota 

Sarang 

Semut) 

A-IV Batas Paip 1.0805 1.1231 1.2134 Increasing 

B-IV Pengkalan Kundur 0.9390 0.9099 0.8543 Decreasing 

C-IV Kangkong 1.1030 1.1584 1.2777 Increasing 

D-IV Permatang Buluh 1.0471 1.0715 1.1221 Increasing 

E-IV Bukit Besar 1.0960 1.1474 1.2576 Increasing 

F-IV Sungai Limau  1.0328 1.0495 1.0839 Increasing 

G-IV Guar Chempedak 0.9931 0.9897 0.9828 Decreasing 
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To enhance the understanding of the MPI results presented earlier, Figure 3 visualizes the 

MPI trends of six selected PPKs across the three phases. This line chart provides a clear view 

of temporal changes in productivity performance over time. An MPI value greater than 1 

indicates an increase in productivity, a value less than 1 reflects a decline, and a value equal to 

1 denotes no change in productivity. This interpretation helps contextualize the trends observed 

in Figure 3. Notably, Titi Haji Idris exhibited a very high MPI value in Phase 1 (MPI_1) 

(2.8921) but experienced a significant decline in the following phases. In contrast, Arau 

maintained a stable MPI of 1.0000 across all phases, indicating consistent productivity. Other 

PPKs, such as Kerpan and Simpang Empat, showed moderate fluctuations over the period.The 

line chart improves the readability of MPI dynamics compared to dense tabular presentation. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3: Trend of MPI values across three phases for six selected PPKs 

 

3.3.  Discussion of results 

In the context of MADA, paddy production follows a structured biannual planting cycle: Season 

1 typically runs from March to July (the drier season), while Season 2 spans from August to 

February (the wetter or monsoon-influenced season). This seasonal distinction is crucial when 

interpreting MPI results, as climatic variability particularly heavy rainfall and flooding during 

Season 2 can significantly affect planting schedules, productivity, and technological adoption. 

MPI Phase 1 (Season 2, 2020 – Season 1, 2021) revealed mixed performance across PPKs, 

likely influenced by the monsoon season which often disrupts the planting and harvesting 

cycles. Several PPKs experienced notable declines in productivity, presumably due to delays 

in replanting and adverse weather conditions. For instance, PPK Tambun Tulang recorded an 

MPI of 0.9475, indicating an overall decline in productivity, primarily driven by a decrease in 

technological change (TC = 0.9682). Other PPKs, such as Kodiang, Kubang Sepat, and Jerlun, 

also recorded MPI values below 1, reflecting similar downward trends. These findings support 

the argument that agricultural efficiency is highly sensitive to seasonal variations and external 

shocks (Arslan et al. 2017). 



 

Roslah Arsad, Zaidi Isa & Mazura Mokhtar  

294 

From a technological change (TC) perspective, the MPI Phase 1 results indicate that many 

PPKs experienced only marginal improvements or even declines in TC values. This suggests 

that productivity changes during this period were not predominantly driven by technological 

advancements, but rather influenced by changes in efficiency or external operational 

constraints. On average, TC values for most PPKs hovered around or fell below 1.000, 

reflecting either technological stagnation or regression. This pattern points to a limited adoption 

of new innovations or a lack of significant technological upgrading in paddy farming practices 

between Season 2, 2020 and Season 1, 2021. Notably, this period coincided with the onset of 

the COVID-19 pandemic, which plausibly disrupted the supply chain for modern agricultural 

inputs, limited access to machinery, and restricted the availability of extension and advisory 

services. As a result, the low TC values observed may reflect a critical juncture where 

technological progress was significantly constrained, despite the strategic importance of 

innovation in driving long-term productivity improvements. 

In addition to weather-related disruptions, it is important to acknowledge the potential 

impact of the COVID-19 pandemic during MPI Phase 1 (2020–2021). Although paddy farming 

was classified as an essential activity, the implementation of movement control orders (MCOs) 

and associated restrictions may have affected key aspects of rice production. These include 

labor availability, timeliness of input supply (such as fertilizers and pesticides), machinery 

operations, and field supervision. Such disruptions could have contributed to delays in 

replanting and inconsistent management practices across some PPKs, especially those with 

limited operational flexibility. Government interventions, including exemptions for agriculture 

and financial support schemes, helped mitigate severe impacts, but localized inefficiencies may 

still have emerged as a result of pandemic-induced constraints. Therefore, the decline in 

productivity observed in certain PPKs during this phase may not only be attributed to weather, 

but also to the indirect effects of the pandemic. 

Nonetheless, this phase also saw notable improvements among certain PPKs, particularly 

those that likely had better access to technology and infrastructure. For example, PPK Simpang 

Empat recorded a high MPI of 1.4751 with a TC of 1.2627, suggesting a significant productivity 

gain due to the implementation of new technologies. Similarly, PPK Titi Haji Idris experienced 

a substantial surge in productivity (MPI = 2.8921), most likely attributed to a major influx of 

technology or the adoption of new mechanization methods in paddy production management. 

According to Waqas et al. (2024), productivity growth is often driven by advancements in 

technology, especially in sectors reliant on natural conditions such as agriculture. 

MPI Phase 2 (Season 1, 2021 – Season 2, 2021), a majority of PPKs showed drop in 

productivity, indicating that the implementation of modern agricultural technologies was either 

not effectively sustained or faced challenges during adoption, possibly due to limited technical 

capacity, insufficient support systems, or unfavorable weather conditions affecting field 

operations. Among the PPKs recorded declining performance in this phase were Kayang (MPI 

= 0.9176, TC = 0.9497), Simpang Empat (MPI = 0.9165, TC = 0.9490), Kobah (MPI = 0.9386, 

TC = 0.9627), and Hutan Kampong (MPI = 0.9362, TC=0.9612). This suggests the presence of 

a capability gap among PPKs in effectively adopting and applying technology, possibly due to 

differences in financial resources, technical skills, or management capacity (Latruffe et al. 

2012). Tambun Tulang (MPI = 1.0435, TC = 1.0259), Kodiang (MPI = 1.0957, TC = 1.0564), 

Sanglang (MPI = 1.1974, TC = 1.1141), Tunjang (MPI = 1.0386, TC = 1.0230), Jitra (MPI = 

1.5048, TC = 1.2779), and Alor Senibong (MPI = 1.0206, TC = 1.0123) recorded notable 

improvements in performance. The surge in their TC values suggests that these PPKs had 

actively adopted mechanization, precision fertilization, and more efficient crop monitoring 

systems. As noted by Sanyaolu and Sadowski (2024), the use of precision agriculture tools can 
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significantly boost technical efficiency and support sustainable productivity growth. Although 

Season 1 typically offers drier conditions, MPI Phase 2 results suggest that internal factors such 

as technology fatigue and insufficient adoption mechanisms played a more dominant role in the 

observed declines. Conversely, in Season 2 of 2021, weather volatility may have again posed 

challenges, although selected PPKs demonstrated resilience through adaptive practices. 

MPI Phase 3 (Season 2, 2021 – Season 1, 2022) served as a critical phase for evaluating the 

sustainability of the productivity gains achieved in the previous phase. Overall, this phase 

witnessed a slight recovery in productivity levels among most PPKs. For instance, PPK Kayang 

recorded a significant improvement in MPI 3 (1.4774) compared to its earlier decline to 0.9176 

in MPI 2. Similar increase were also observed for PPK Jerlun (from 0.8463 to 1.1648) and 

Kubang Sepat (from 0.7945 to 1.2985). There were PPKs such as Tambun Tulang that showed 

continuous improvement from MPI 1 to MPI 3, suggesting that consistent management efforts 

and gradual technological adoption had a lasting positive impact (Mehboob & Harris 2023). 

From a longitudinal perspective, productivity trends across the MPI phases varied 

significantly among the PPKs. For example, PPK Kayang experienced a notable decline during 

the second phase, followed by a recovery in the third phase, an indication of possible 

inconsistencies in investment or an unsustainable technology implementation strategy. In 

contrast, PPK Tambun Tulang exhibited steady recovery and continuous improvement across 

all phases, likely attributable to strengthened management and systematic technological 

adoption. PPK Kerpan, meanwhile, displayed fluctuating performance, with gains in the first 

and third phases but a decline in the second, suggesting challenges in maintaining consistent 

best practices.When contextualized within the national scenario, the observed trends among the 

PPKs align with Malaysia's fluctuating paddy production over the study period. According to 

Department of Statistics Malaysia (DOSM), annual paddy production showed marginal 

increases in 2020, followed by a slight dip in 2021, largely due to climate variability, disruptions 

from the COVID-19 pandemic, and rising input costs. These macro-level challenges parallel 

the decline in productivity observed among many PPKs in MPI Phase 2, where operational 

inefficiencies, limited labor mobility, and delayed input distribution were reported. 

Moreover, the contrasting performance among PPKs can also be attributed to localized 

differences in agro-ecological conditions, infrastructure, and institutional support. PPKs that 

consistently improved, such as Tambun Tulang and Alor Senibong, may have benefited from 

more reliable irrigation infrastructure, stronger leadership, or better access to mechanization. 

Conversely, PPKs with declining or inconsistent performance, such as Kerpan or Simpang 

Empat, may have faced periodic flooding, pest outbreaks, or delays in technology adoption. 

These findings underscore the importance of customizing support mechanisms to address both 

national and local-level production constraints. These findings highlight the critical need for 

PPK management to engage in continuous and strategically planned investments in agricultural 

technology to ensure long-term productivity gains. Such investments should be aligned with 

each PPK’s operational capacity and tailored to address specific inefficiencies identified 

through performance monitoring. In addition to financial investment, robust training and 

capacity-building initiatives are essential to equip management and field personnel with the 

skills required to implement, monitor, and adapt technological solutions effectively. 

Equally important is the role of supportive agricultural policy. Policymakers should develop 

frameworks that offer targeted incentives, such as performance-based grants, access to low-

interest financing, and technical advisory services, to reward PPKs demonstrating consistent 

progress. These mechanisms would not only encourage sustained improvements but also 

promote a culture of innovation and accountability within the sector. Ultimately, a coordinated 

approach involving strategic investment, human capital development, and policy support is vital 
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for strengthening the resilience, efficiency, and sustainability of Malaysia’s paddy production 

system. Similar policy recommendations have been proposed by Mehboob and Harris (2023), 

emphasizing that tailored incentive schemes and extension services are pivotal in sustaining 

technology-driven gains in agricultural systems. 

Overall, the integration of DEA-based efficiency scores (EC) and the Malmquist Index 

framework (MPI and TC) provides a more nuanced understanding of productivity dynamics 

among the PPKs. The results suggest that in some cases, better management and more efficient 

use of existing resources contributed more to productivity improvements than technological 

advancement. Conversely, when technological change was evident but not matched with 

efficiency gains, it highlights the importance of effective implementation at the field level. This 

interaction reinforces the need to not only introduce innovation but also ensure its proper 

absorption and utilization by on-ground management. 

 

4. Conclusion and Future Work 

This study applied DEA alongside the Malmquist Index (MPI) to evaluate the productivity 

performance of PPKs across multiple planting seasons. The findings revealed substantial 

variations in efficiency and technological progress, with some PPKs achieving notable 

productivity improvements while others remained stagnant. The decomposition of MPI into 

efficiency and technological change provided critical insights into the drivers of productivity, 

highlighting the importance of both resource utilization and technological advancement. 

While the DEA-MPI framework effectively captured temporal shifts in productivity, future 

studies should consider integrating Stochastic Frontier Analysis (SFA) to enhance the 

robustness of efficiency measurement by accounting for statistical noise and external shocks. 

SFA enables a clearer distinction between inefficiency and random fluctuations caused by 

factors such as climate variability, policy shifts, and market conditions, leading to a more 

accurate estimation of the true production frontier. Moreover, incorporating copula-based 

modeling can offer a deeper understanding of the dependence structure between efficiency 

scores, technological change, and external risk factors. By modeling their joint distribution, 

copulas can reveal nonlinear dependencies often overlooked by traditional methods. This is 

particularly valuable in analyzing the compounded effects of risks such as fertilizer price 

volatility, labor shortages, and adverse weather on PPK performance. 

Future research should conduct comparative analyses between DEA-MPI and SFA 

outcomes to better understand the underlying drivers of productivity variations. Copula-based 

approaches may also help assess how different PPKs respond to correlated economic and 

environmental shocks, supporting more resilient and targeted policy interventions. Lastly, 

expanding the dataset to encompass multiple years and integrating machine learning techniques 

within the DEA-SFA-Copula framework may enhance predictive accuracy. Investigating the 

impact of digital agriculture and precision farming technologies is also crucial to understanding 

their role in boosting productivity. These advanced approaches can provide policymakers with 

strategic insights for optimizing Malaysia’s paddy production, contributing to sustainable 

growth and national food security. 
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