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ABSTRACT

Forensic laboratories analyze firearm-related evidence utilizing established ballistic
identification systems such as the Integrated Ballistic Identification System (IBIS), Advanced
Ballistics Analysis System (ALIAS), EVOFINDER Automated Ballistic Identification System,
and CONDOR Ballistic Identification System. However, these systems require physical
verification by experts, resulting in the process being time-consuming. Previous studies
developed a Fisher Linear Discriminant Analysis (FLDA)-based ballistic identification
algorithm to address this limitation, encompassing image pre-processing, feature extraction, and
identification. This study evaluates the robustness of the FLDA-based ballistic identification
algorithm against fixed-value impulse noise, including pepper, salt, and salt-and-pepper noise.
A dataset of ballistic images from five Vektor Parabellum SP1 9mm pistols (Pistols A—E) was
contaminated with noise levels ranging from 10% to 90%. The results demonstrate that the
algorithm maintains high identification rates exceeding 90% for images with up to 90% pepper
and salt noise, utilizing maximum-ranked and minimum-ranked ordered denoising spatial
kernels. Similarly, high identification rates of up to 80% were achieved for salt-and-pepper
noise. These findings highlight the robustness of FLDA-based statistical computing techniques
in forensic firearm pattern identification, reducing reliance on physical verification and
expediting forensic investigation. Furthermore, this study aligns with the United Nations
Sustainable Development Goals (SDGs), particularly SDG9 (Industry, Innovation, and
Infrastructure), by fostering Artificial Intelligence (Al)-driven forensic advancements and
SDG16 (Peace, Justice, and Strong Institution) by strengthening forensic accuracy in criminal
investigations, ultimately contributing to national security and judicial efficiency.

Keywords: Fisher Linear Discriminant Analysis (FLDA); ballistic pattern identification; fixed-
value impulse noise; statistical computing; United Nations Sustainable Development Goals
(SDGs)

ABSTRAK

Makmal forensik menganalisis bukti berkaitan senjata api dengan menggunakan sistem
pengecaman balistik yang mantap seperti Integrated Ballistic Identification System (IBIS),
Advanced Ballistics Analysis System (ALIAS), EVOFINDER Automated Ballistic Identification
System, dan CONDOR Ballistic Identification System. Walau bagaimanapun, sistem-sistem ini
memerlukan pengesahan fizikal oleh pakar, mengakibatkan proses tersebut memakan masa.
Sorotan kajian terdahulu telah membangunkan satu algoritma pengecaman balistik berasaskan
Analisis Pembezalayan Linear Fisher (FLDA) bagi menangani kekangan ini, yang merangkumi
pra-pemprosesan imej, pengekstrakan fitur, dan pengecaman. Kajian ini menilai keteguhan
algoritma pengecaman balistik berasaskan FLDA terhadap hingar dedenyut bernilai tetap,
termasuk hingar lada, hingar garam, dan hingar garam-dan-lada. Satu set data imej balistik
daripada lima pistol Vektor Parabellum SP1 9mm (Pistol A—E) tercemari dengan tahap hingar
antara 10% hingga 90%. Hasil kajian menunjukkan bahawa algoritma tersebut mengekalkan
kadar pengecaman yang tinggi melebihi 90% bagi imej yang tercemari dengan hingar lada dan
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garam sehingga 90% tahap hingar, dengan menggunakan kernel nyahhingar reruang berpangkat
maksimum dan minimum. Kadar pengecaman tertinggi turut tercapai bagi hingar garam-dan-
lada pada tahap hingar sechingga 80%. Penemuan ini menekankan keteguhan kaedah
pengkomputeran statistik berasaskan FLDA dalam pengecaman pola senjata api forensik,
mengurangkan kebergantungan terhadap pengesahan fizikal dan mempercepatkan siasatan
forensik. Tambahan pula, kajian ini selaras dengan Matlamat Pembangunan Mampan (SDG)
Pertubuhan Bangsa-Bangsa Bersatu, khususnya SDG9 (Industri, Inovasi dan Infrastruktur)
melalui pemerkasaan kemajuan forensik berasaskan Kecerdasan Buatan (Al), dan SDG16
(Keamanan, Keadilan dan Institusi Kukuh) melalui peningkatan ketepatan forensik dalam
siasatan jenayah yang akhirnya menyumbang kepada keselamatan negara dan keberkesanan
sistem kehakiman.

Kata kunci: Analisis Pembezalayan Linear Fisher (FLDA); pengecaman pola balistik; hingar
dedenyut bernilai tetap;, pengkomputeran statistik; Matlamat Pembangunan Mampan
Pertubuhan Bangsa-Bangsa Bersatu (SDG)

1. Introduction

In law enforcement, compelling evidence is crucial, particularly in firearm-related cases.
Recovered fired bullets and cartridge cases provide valuable insights into firearm characteristics
such as type, caliber, model, and potential links to past criminal activities. Ballistic experts
primarily analyze rifling impressions on bullets and distinctive impressions on cartridge cases,
including breech faces, ejectors, and firing pin impressions (Figure 1). While rifling
impressions may be distorted upon impact, ejector and breech face impressions lack consistency.
Experts and literature (Ghani ef a/. 2010; Chuan et al. 2013a, b; Chuan 2014; Chuan et al. 2017,
Chuan et al. 2023) identify firing pin impressions as the most reliable feature for ballistic
identification.

Ejector impression

Breech face impression

Firing pin impression .
circular boundary Anchor point. A= (xa. ya)

Figure 1: Distinctive impressions on fired cartridge cases

The origins of forensic ballistics identification trace back to Philip Gravelle, who pioneered
the utilization of a low-contrast optical comparison microscope in forensic laboratories. The
method was later applied by Calvin Goddard and Charles Waite during the investigation of the
Saint Valentine’s Day massacre in 1929 (Nichols 1997; Heard 2008). Despite its historical
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significance, optical comparison remained subjective, frequently leading to potential errors,
prolonged investigation times, and reliance on expert interpretation.

With advancements in technology, various automated ballistics identification systems have
emerged for forensic applications. Commercial imaging systems such as the Integrated
Ballistics Identification System (IBIS), Advanced Ballistics Analysis System (ALIAS),
EVOFINDER Automated Ballistic Identification System, and CONDOR Ballistic
Identification System have significantly reduced investigation times from weeks to hours by
generating a ranked list of potential matches. However, these systems have inherent limitations,
including illumination inconsistencies, reflection artifacts, and the need for expert validation.
Consequently, the development of feature-based ballistic identification algorithms has gained
traction in forensic research.

Existing studies have explored the effectiveness of these algorithms under controlled
conditions; however, limited research has assessed their performance in noisy imaging
environments. Chuan et al. (2017) previously evaluated the robustness of their Fisher Linear
Discriminant Analysis (FLDA)-based ballistic identification algorithm under random-value
impulse noise. Nevertheless, fixed-value impulse noise, which can result from signal errors
during image acquisition, remains an overlooked challenge. To address this gap, this study
systematically evaluates the performance of an FLDA-based ballistics identification algorithm
against simulated fixed-value impulse noise, including pepper, salt, and salt-and-pepper noise.

The primary motivation for selecting the FLDA-based ballistic identification algorithm lies
in its demonstrated computational efficiency, identification accuracy, and robustness under
noise-free scenarios, making it a suitable candidate for further evaluation in noisy environments.
Unlike conventional machine learning and deep learning algorithms that typically depend on
hold-out or cross-validation techniques, this study introduces a novel statistical evaluation
framework specifically designed to address overfitting and underfitting risks associated with
limited datasets. Deep learning algorithms, particularly Convolutional Neural Network-based
(CNN-based) architectures, including both single-stage and two-stage architectures, generally
require large and diverse training datasets to generalize effectively. In contrast, the dataset
utilized in this study is not merely limited in size but also highly sensitive to variations in
lighting, background, and object orientation. Moreover, CNN-based architectures tend to be
less effective for analyzing small regions of interest (ROI) such as the minute firing pin
impression examined in this study, which occupies a tiny portion of a 9mm cartridge case.

Although CNN-based architectures are frequently praised for real-time processing
capabilities, such performance is not essential in forensic ballistic identification. Additionally,
CNN-based architectures impose considerable complexities in terms of architecture design and
optimization that require careful tuning of architectural parameters such as the number of layers,
neurons, epochs, and other hyperparameters. In contrast, the FLDA algorithm offers a more
interpretable and computationally efficient alternative under the practical constraints of forensic
casework. These factors collectively support the appropriateness of employing a conventional
algorithm such as FLDA over more complex CNN-based architectures in this context.

The key contributions of this study include proposing a method to simulate fixed-value
impulse noise for ballistic images, introducing a novel statistical evaluation approach
specifically designed for limited sample forensic datasets, and assessing the robustness of the
FLDA-based ballistic identification algorithm under various noise conditions. To facilitate a
comprehensive analysis, the remainder of this article is structured as follows: Section 2 reviews
related work, Section 3 presents the pseudo-code for simulating noisy images utilizing R
statistical software, Section 4 outlines the research methodology, including denoising
techniques and the Cross Industry Standard Process for Data Mining (CRISP-DM) framework,
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Section 5 presents the analysis results and discussion, and Section 6 concludes the study with
final remarks.

2. Related Works

In response to the limitations of commercial ballistics identification systems highlighted in
earlier studies, researchers have increasingly developed semi-automated and fully automated
feature-based ballistic identification algorithms to support forensic firearm examination. These
approaches incorporate advanced image processing techniques, statistical feature extraction,
and machine learning or deep learning algorithms to enhance the accuracy, objectivity, and
operational efficiency of ballistics identification. Early efforts include the work of Xin et al.
(2000), who introduced an automatic ballistic identification algorithm that extracted image
features from breech face, extractor, and center-firing pin impressions. Their method
incorporated texture-based features and geometric properties, such as the firing pin radius (7),
and the deviation distance of the anchor point (A). Although the identification rate exceeded
90%, the approach suffered from high computational costs due to reliance on the Circles Hough
transform (CHT). To address this, Zhou et al. (2001) proposed a more advanced ballistic
identification algorithm integrating local orientation analysis with an active snake model to
enhance feature extraction. Nevertheless, their algorithm remained dependent on CHT and thus
continued to face similar computational limitations.

Thumwarin (2008) explored moment invariants (MI) extracted from primer rotation,
incorporating Fourier coefficients for feature computation. While the proposed ballistic
identification algorithm achieved promising identification accuracy, it faced challenges related
to primer segmentation and the robustness of moment features under translation and scaling.
Subsequently, Leng and Huang (2012) introduced an improved automatic ballistic
identification algorithm based on translation, rotation, and scale (TRS) invariant moment
features. Their framework employed image pre-processing techniques such as power-law
transformation, Otsu’s thresholding, and Sobel sharpening. However, computational cost
remained a concern, as features were extracted from the entire cartridge case rather than
localized impressions.

Building on global efforts, researchers in Malaysia have made significant contributions to
feature-based ballistic identification algorithms. Ghani er al. (2009a, 2009b; 2010; 2018)
pioneered early ballistic identification algorithms utilizing statistical moments features and
TRS-non-invariant geometric moments. Their research evolved from simple summary statistics
of center-firing pin impressions to the extraction of geometric moment non-invariants,
highlighting the trajectory of local forensic approaches. Liong et al. (2012) extended this line
of work by applying Principal Component Analysis (PCA) to reduce feature dimensionality
from 68 extracted features, and employed FLDA (Fisher 1936) as the identification algorithm,
reporting improved identification performance.

In parallel, Kamaruddin et al. (2012) introduced a neural network-based ballistics
identification algorithm by replacing the FLDA algorithm with a two-layer feed-forward
backpropagation neural network (FBPNN) algorithm utilizing a tansig-tansig activation
function. Ghani et al. (2018) later refined Kamaruddin et a/.’s (2012) ballistic identification
algorithm by incorporating a tansig-purelin configuration, improving feature learning. Despite
these advances, the proposed algorithm required manual interpretation of center-firing pin
impression locations and lacked TRS-invariant properties. To address these limitations, Chuan
et al. (2013a, 2013b) and Chuan (2014) developed an enhanced automated feature-based
ballistic identification algorithm utilizing Orthogonal Legendre Moment Invariants (OLMlIs)
within an FLDA-based ballistic identification framework. Their work prioritized translation
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and scale invariants while rejecting Zernike Moment Invariants (ZMIs) due to computational
complexity and unit disk constraints.

Chuan et al. (2017) further validated the FLDA-based ballistic identification algorithm by
simulating impulse noise up to 70% and achieving over 90% identification accuracy utilizing
median filtering. In contrast, Razak et al. (2017) applied Canny edge detection with CHT and
achieved 93% identification accuracy, although Chuan (2014) demonstrated that Laplacian
kernels outperformed Canny (1986) and other sharpening techniques such as Sobel, and Marr
and Hildreth (1980) filters in feature enhancement. More recently, Liong et al. (2020) proposed
a mobile-based ballistic identification system achieving 98% identification accuracy utilizing
an FBPNN with a sigmoid-linear activation function. However, the approach lacked practical
validation in segmentation and did not incorporate TRS-invariant features.

A comparative study by Chuan ef al. (2023) evaluated five types of two-dimensional
moment invariants for ballistic identification, including OLMIs, Hu Moment Invariants (HMIs),
Tsirikolias-Mertzois Moment Invariants (TMMIs), Pan-Keane Moment Invariants (PKMIs),
and Central Geometric Moments (CGMs), utilizing FLDA as the identification algorithm.
Although CGMs achieved the highest identification accuracy for weakly associated feature sets,
they lacked TRS invariants, confirming earlier limitations reported by Leng and Huang (2012).
This limitation is particularly relevant to the dataset utilized in the present study, which is highly
sensitive to variations in lighting, background, and object orientation.

Despite these advancements, the potential impact of fixed-value impulse noise, such as salt,
pepper, and salt-and-pepper noise introduced during ballistic image acquisition, remains
underexplored in existing literature. To address this gap, the present study re-evaluates the
robustness of the FLDA-based ballistics identification algorithm under simulated noise
conditions. This investigation fills a critical void by assessing the algorithm’s performance
under real-world signal degradation scenarios, thereby supporting its applicability in forensic
environments. Although ANN-based architectures, particularly CNN-based architectures, have
recently gained attention in ballistic identification, they remain impractical in forensic settings.
Their effectiveness is frequently constrained by limited dataset sizes and high sensitivity to
variations in lighting, background complexity, and object orientation. Moreover, CNN-based
architectures are typically less effective when applied to small objects, such as in pistol
detection tasks (Li et al. 2021; Sood et al. 2021). This is especially relevant to the firing pin
impression examined in this study, which appears as a minute cavity on a cartridge case with
an overall diameter of merely 9mm. Given these challenges, conventional algorithms such as
FLDA offer a more practical and interpretable solution, particularly under the constrained and
variable conditions typically found in forensic applications.

3. Simulated Noisy Image

In digital signal processing, noisy images refer to undesired errors that degrade the quality of
digital images. These signal errors may occur during digitization and image formation, falling
into four primary categories: additive noise, multiplicative noise, impulse noise, and
quantization noise. However, this study specifically focuses on impulse noise due to its primary
objective of evaluating the robustness of the FLDA-based ballistic identification algorithm
utilizing simulated fixed-value impulse noisy images, including unipolar and bipolar noisy
images.

Impulse noise, such as pepper, salt, and salt-and-pepper noise, arises from transmission
errors, sensor malfunctions, memory damage, and timing errors during analog-digital
conversion (Chuan 2014; Chuan et al. 2017; Alanazi ef al. 2023; Toktas et al. 2023). Pepper
and salt noises are classified as unipolar, with pixel values of 0 and 1, respectively,
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contaminating gray-scale images when compressed from the original intensity range of 0-255
to 0—1. In contrast, salt-and-pepper noise is a bipolar mixture of salt and pepper noises,
representing a typical form of impulse noise affecting images in this study.

Mathematically, suppose that I= g[(x, y)} ,2 Tepresents a digital image, and

I. =g, [(x, y):l ,2 Tepresents an image I contaminated with &x100%  where
i
255
g (x, y) of an image I, can be expressed as Eq. (1).

g, 8. € {0,1,2,...,255} and x,(»)=0,1,2,...,4-1,(4—1). The pixel intensity,

gc (x,y)zg(x,y)+[(u <b)><min(g(x, y))}+[(b <u <d)><max(g(x,y))} (1

where u is a uniform random variable, u(O, 1). When d =0, the image I, is contaminated
with pepper noise, while for 5 =0, it is affected by salt noise. If b =d, the image experiences
salt-and-pepper noise. To simulate noisy images, the study implements pseudo-code in R
statistical software for the generation of pepper (Figure 2), salt (Figure 3), and salt-and-pepper
(Figure 4) noise at various contamination levels.

Function PerturbImage (P, theta)
#Get dimensions of the input matrix P
numRows <- nrow (P)
numCols <- ncol (P)
#Calculate the number of elements to perturb based on theta percentage
numElementsToPerturb <- round(theta * numRows * numCols / 100)
#Randomly select coordinates to perturb
selectedRows <- sample (l:numRows, numElementsToPerturb, replace=True)
selectedCols <- sample(l:numCols, numElementsToPerturb, replace=True)
#Combine selected coordinates to avoid duplicates
uniqueCoordinates <- unique (cbind(selectedRows, selectedCols)) [l:numElementsToPerturb, ]
#Create an empty numeric vector to store perturbation values
perturbationValues <- numeric (numElementsToPerturb)
#Apply perturbation to the input matrix P
P[cbind (uniqueCoordinates([, 1], uniqueCoordinates[, 2])] <- perturbationValues
#Return the perturbed matrix P
return (P)

End Function

Figure 2: Pseudo-code for simulating pepper noise

Function PerturbImage (P, theta)
#Get dimensions of the input matrix P
numRows <- nrow (P)
numCols <- ncol (P)
#Calculate the number of elements to perturb based on theta percentage
numElementsToPerturb <- round(theta * numRows * numCols / 100)
#Randomly select coordinates to perturb
selectedRows <- sample (l:numRows, numElementsToPerturb, replace=True)
selectedCols <- sample(l:numCols, numElementsToPerturb, replace=True)
#Combine selected coordinates to avoid duplicates
uniqueCoordinates <- unique (cbind(selectedRows, selectedCols)) [l:numElementsToPerturb, ]
#Generate random values for perturbation
perturbationValues <- sample(l, numElementsToPerturb, replace=True)
#Apply perturbation to the input matrix P
P[cbind (uniqueCoordinates[, 1], uniqueCoordinates[, 2])] <- perturbationValues
#Return the perturbed matrix P
return (P)
End Function

Figure 3: Pseudo-code for simulating salt noise

228



Statistical Computing for Forensic Firearm Pattern Identification

Function PerturbImage (P, theta)
#Get dimensions of the input matrix P
numRows <- nrow (P)
numCols <- ncol (P)
#Calculate the number of elements to perturb based on theta percentage
numElementsToPerturb <- round(theta * numRows * numCols / 100)
#Randomly select coordinates to perturb
selectedRows <- sample (l:numRows, numElementsToPerturb, replace=True)
selectedCols <- sample (l:numCols, numElementsToPerturb, replace=True)
#Combine selected coordinates to avoid duplicates
uniqueCoordinates <- unique (cbind(selectedRows, selectedCols)) [l:numElementsToPerturb, ]
#Generate random binary value for perturbation
pertubationValues <- sample(0:1, numElementsToPerturb, replace=True)
#Apply perturbation to the input matrix P
P[cbind (uniqueCoordinates([,1], uniqueCoordinates|[,2])]<-pertubationValues
#Return the perturbed matrix P
return (P)

End Function

Figure 4: Pseudo-code for simulating salt-and-pepper noise

6=0.0 6=0.2 0=04 0=0.6 6=0.38

Figure 5: Simulated pepper noisy images contaminated with @ variations € =0.0,0.2,0.4,0.6 and 0.8

6=0.0 6=02 6=04 6=0.6

0=0.8

Figure 6: Simulated salt noisy images contaminated with @ variations 6 =0.0,0.2,0.4,0.6 and 0.8

i "‘_ : [ ) B

6=0.0 6=0.2 0=04 0=0.6 6=0.8
Figure 7: Simulated salt-and-pepper noisy images contaminated with @ variations € =0.0,0.2,0.4,0.6 and 0.8

The simulated images corresponding to different noise intensities (9=0.0, 0.2,04,0.6,
and 0.8) (Figures 5-7) illustrate the contamination process. These illustrated noisy images
contaminated by pepper, salt, and salt-and-pepper noise at §=0.0,0.2,0.4,0.6, and 0.8,
respectively. This study emphasizes the significance of the Signal-to-Noise Ratio (SNR) for
assessing noisy image levels. However, it takes a different approach by not utilizing SNR to
simulate noise levels on images. Instead, this study utilizes contamination percentages, offering
distinct advantages. This approach allows for easy simulation of noise based on investigated
levels and facilitates the identification of noise levels in images when unknown. This is
particularly beneficial as varying spatial kernels may be necessary for effectively removing
contaminated noise levels in noisy images.
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4. Theoretical Background of the Proposed Algorithm

This study adopts the CRISP-DM framework, a widely recognized methodology applied in
various disciplines, including education (Liang et al. 2024; Okoye et al. 2024), medical research
(Mirza et al. 2023), and social sciences (Yunus & Loo 2024). Comprising six phases, including
business understanding, data understanding, data preparation, modeling, evaluation, and
deployment. This data science framework ensures a structured and systematic approach. The
following sections describe its application in this study.

4.1. Business understanding

The primary objective of this study is to evaluate the robustness of the FLDA-based ballistic
identification algorithm when applied to unipolar and bipolar fixed-value impulse noise
conditions. Specifically, this study aims to determine the optimal spatial kernel type and size
for denoising, ensuring that identification rates exceed 90% across all noise levels. Additionally,
the statistical significance of the identification rate differences between noisy and non-noisy
images is examined. To ensure reliable performance evaluation, ten random seeds were selected
within the range of 1 to 9999, each representing a distinct scenario.

The dataset consists of 747 non-noisy images, acquired utilizing the commercialized
ballistics identification system (CONDOR) at the Royal Malaysia Police (RMP) forensics
laboratory in Cheras, Kuala Lumpur, Malaysia. Due to daily acquisition restrictions, obtaining
non-noisy images posed challenges, necessitating standardized illumination conditions to
maintain image consistency. This study also addresses financial constraints in software
selection. While Matrix Laboratory (MATLAB) is widely utilized for image processing and
pattern recognition, its high cost led to the adoption of R statistical software as a cost-effective
alternative. This decision not merely validates the FLDA-based ballistic identification
algorithm but also reduces execution time and expenses associated with ballistic identification
tasks. Figure 8 provides a schematic representation of the FLDA-based ballistic identification
algorithm, with subsequent sections detailing each phase.

Business Data Data _ _
Understanding Understanding Preparation Modeling Evaluation Deployment

Figure 8: Schematic representation of the FLDA-based ballistic identification algorithm

4.2. Data understanding

The data understanding phase establishes a foundational basis for subsequent data preparation.
In this study, a dataset of 747 non-noisy images was collected from five semi-automatic
Parabellum Vektor SP1 9mm pistols, labeled as Pistol A, Pistol B, Pistol C, Pistol D, and Pistol
E. These models were selected based on guidance from the RMP, ensuring consistency in age,
caliber, and structure design. This selection was particularly crucial as the center-firing pin
impressions on cartridge cases from these models are difficult to distinguish without specialized
tools. These pistols were selected due to their frequent utilization in criminal activities in
Malaysia.
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Initially, 150 cartridge cases were collected for each pistol. However, a preliminary
screening identified three cartridges with one from Pistol D and two from Pistol E that exhibited
center-firing pin impressions inconsistent with the rest of the dataset. Upon verification by the
RMP, these were classified as outliers and excluded from this study. The remaining 747 center-
firing pin impression images were captured utilizing the CONDOR system and stored in Joint
Photographic Experts Group (JPEG) format, each with a resolution of 389 pixelsx 389 pixels
for further analysis. Subsequently, 50 center-firing pin impression images were randomly
selected for each pistol utilizing the simple random sampling method applied in this study.

4.3. Data preparation

Data preparation involves a series of essential steps, including data selection, cleaning,
formatting, and integration. This study focuses exclusively on the center-firing pin impressions
of fired cartridge cases, as this feature has been shown to be structurally resilient and resistant
to deformation compared to other surfaces. Its durability makes it an ideal candidate for ballistic
identification (Ghani et al. 2010; Chuan et al. 2013a). This study deliberately excluded rim-
firing pin impression, given that pistols utilizing rim-firing mechanisms lack the capability to
inflict fatal injuries. As a result, they are rarely utilized in serious criminal activities. By
concentrating on center-firing pin impressions, this study ensures the forensic relevance of the
dataset. All images were acquired in a controlled environment utilizing the CONDOR system,
maintaining consistency in lighting and positioning to facilitate accurate identification.

4.3.1. Denoising noisy images

To evaluate the robustness of the denoising process, artificial noise, such as pepper, salt, and
salt-and-pepper, was introduced into the dataset at varying levels &x100%. Initial
identification tests revealed a significant reduction in identification accuracy when denoising
was not applied. Consequently, a spatial kernel-based denoising approach was implemented
before feature extraction, following the FLDA-based ballistic identification algorithm. The
denoising kernel was selected based on the physical characteristics of the center-firing pin
impressions. Table 1 summarizes the statistical spatial kernels utilized for denoising, each
tailored to a specific noise type. The contraharmonic mean, minimum, first quartile (Q1),
median, third quartile (Q3), and maximum filters were applied based on their effectiveness in
removing different types of noise.

Table 1: Denoising spatial kernels for a noisy image

Denoising spatial kernel

Noise Contraharmonic Mean  Minimum O Median 0s Maximum
Pepper Yes Yes Yes Yes No No

Salt Yes No No Yes Yes Yes
Salt-and-pepper No No No Yes No No

Suppose that K:[gC (x, y)]h2 represents the denoising spatial kernel with a size of

W = (26 + 1)2 as expressed in Eq. (2).
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g(x—c,y+¢) ge(x+0,y+¢) g (x+¢.y+9)
K= gc(x—g,y+0) gc(x+0,y+0) gc(x+g,y+0) (2)
g(x-6.y-¢) ge(x+0,y-¢) g (x+¢,y-¢)

where g, (x+0, y+0) is the response value for g., and ¢=1,2,3,...,7. The kernel K was
applied to the noisy image I. utilizing convolution, producing the denoised image I.
Mathematically, this transformation is expressed as i:[g(x, y)]( PR where

x(¥)=0,1,2,...,2—¢,(A—¢), and the denoised intensity value, g e %{0, 1,2,...,255} is

scaled within the range [0, 255]. In particular, the pixel intensity g(x+0, y+0) is estimated

utilizing contraharmonic mean, quartile-based filters, and maximum filtering, as formulated in
Eqgs. (3)-(4).

i i [2(x—igsy—Jo)] "

§(xy) =002 )
> [elx—ig.y—io) [
ihy==¢ jo=—¢

g(x+0,y+0)=P, (Vec(K)) 4)

where P, represents the percentile-based denoising function. This approach effectively
restores image clarity while preserving critical structural details, ensuring reliable feature
extraction for ballistic identification.

4.3.2. Image pre-processing and feature engineering

Building upon the methodologies outlined in Section 4.3.1, this study further refines the
extracted image dataset by implementing a series of image processing and feature engineering
techniques. Specifically, the enhancement, segmentation, and extraction of relevant image
characteristics were crucial to ensuring robust feature representation for subsequent analysis.
To achieve this, a sequence of image processing operators was applied, including the Laplacian
sharpening spatial kernel, the Otsu threshold method, and the Moura and Kitney (1991) least-
square circle fitting algorithm. These techniques were systematically employed to highlight and
quantify the physical attributes of the center-firing pin impression. Following the enhancement
phase, noisy images were subjected to a denoising process utilizing appropriate denoising
spatial kernels. Subsequently, the ROI segmentation was performed, followed by feature
engineering, which involved feature creation, extraction, and selection. The feature selection
phase utilized stepwise selection techniques and correlation analysis to retain the most
informative attributes. The chronological procedure for image processing, denoising,
segmentation, and feature engineering is outlined as follows:
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Step 3:

Step 4:

Step 5:
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Input the image I, into R statistical software.
Enhance image edges utilizing the Laplacian sharpening spatial kernel

resulting in an enhanced image, Icpgk = [ gcrsk (%, y):l( A-2c-2) where

gcrsk (%, ») is computed based on Eq. (5).

geusk (%, ) = [255vee' (Kepsk ) vee(Kepsk )| )
0 1 0
where Kcpge =| 1 —4 1 | represents the Laplacian kernel coefficient.
0 1 0

Normalize the image intensity, gcp sk (%, ) utilizing Eq. (6) to ensure that
gen (%, ) €[0,1] is compressed within the range [0, 1].

gersk (x.y)— min (gersk (%, 7))

x,yelcrsk
on (%, 2) max (gCLSK (x y))— min (gCLSK (x, y))
x,yelcrsk % yelers

This results in the normalized image, Iy = [ gen (=, y)]( A-2c-2)"

Binarize the image Iy utilizing the Otsu threshold method, producing a
I, gcn2ipB
0, gcN <feB
The threshold 7gg is determined by minimizing within-class variance as

binary image, Icg =[gCB(x,y)](ﬂ_2g_2)z with gcp Z{

expressed in Eq. (7).

~ 1 .
IgB = 555 8 mtln(ﬂtwt + H55- @55 ) (7)
t 255
where My = Z2551¢CN (l), M55 = Z 2551(0CN (l),
=0 i=t+1
y =(H —25-2) ZCDCN 10g( j and
=0

, 255
7,
55—y =(H —25-2) Z(PCN log( ZSStJ

i=t+1
Estimate the geometric properties (A and r) of the center-firing pin impressions
(Figure 1-left) utilizing Moura and Kitney’s least square circle fitting algorithm,
given as Egs. (8)-(9)
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Step 6:

Step 7:

Step 8:

- -1
2
2(/10!20 _aOOaIO) 2(Aeqy —epap1)

2(Aeyy —eqoctor) 2(10!02 —0!0005(%1) (8)

(
/1(05 30 +a1p)—ajo (e +0502)}
| Aags +aay)—ag (a0 +agy)

> (o= +(ra-))
e x,yelcg 5 )
(H-25-2)

> xPyigep(x.y)

x,y€lcp

where A= Z gep(xy), and apy =

x,yelg

Denoise the images utilizing appropriate spatial kernels (Table 1), resulting in

I

Segmented the ROI, extracting ROI = [grD (x,y)](y 1)2 based on the
5=

estimated A and r.
Extract features such as OLMI;o, OLMI;;, OLMIy;, OLMI, OLMI,3,

OLML;, and OLMIy, from the ROI utilizing (u+v)th order of the OLMI
framework as expressed in Eq. (10).

2u+1)(2v+1) & <
OLMIuv ( Z Z YVuaVvbMap (10)
a=0b6=0

u 1%
where m, = Z Z i—y—
x=0 y=0 / é
moments, and, v,,, V,, are Legendre polynomial coefficients defined in
Eq. (11).

1| g(x,y) represents the geometric

Y
( 1)u_a2 (uu+a2! . (u—a) even
WES S
0, (u—a) odds
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This study selected the Laplacian sharpening spatial kernel due to its superior performance
compared to Sobel, Canny, and Marr-Hildreth in a similar environment. Notably, variations in
Laplacian kernel coefficients did not affect the identification accuracy rate in controlled
conditions. For binarization, the Otsu threshold method outperformed entropy-based methods
such as cross-entropy, Shannon entropy, and Tsallis entropy (Chuan et a/. 2013b; Chuan 2014).
Since the modified Otsu threshold method yielded similar identification accuracy, it was not
selected for processing noisy images (Chuan 2014).

In segmentation, Moura and Kitney’s algorithm was preferred over Albano’s (1974) conic
arcs fitting algorithm, which performed worse. The CHT was avoided due to its high
computational cost. This study also compared square-window and circular-window ROls,
selecting the square-window ROI at ( %)2 and ( %)2 as literature supports utilizing ( % )2
(Ghani et al. 2010). The square-window ROI offered advantages in computational cost,
execution time, pixel intensity distribution, and identification accuracy (Chuan et al. 2013b,
2017; Chuan 2014; Liong et al. 2020). In contrast, the circular-window ROI, due to square
pixel shapes, did not accurately capture circular structures and frequently had lower
identification accuracy.

4.4. Modeling

The primary objective of the modeling phase in this study is to identify pistol types based on
the selected feature set, with OLMIs being selected due to their invariant properties concerning
TRS. Given that the response variable is categorical with five classes, this study employs the
FLDA algorithm. which has been widely validated in ballistics forensics literature (Ghani et al.
2010; Chuan et al. 2013a, b, 2023; Chuan 2014; Liong et al. 2020). Although ANN-based
architectures, including CNNs, have gained popularity and demonstrated strong performance
in various studies, they were not adopted in this study. This is primarily due to their limited
interpretability stemming from the complexity of network design involving multiple hidden
layers, numerous nodes, and various activation functions, as well as their high computational
demands and extended execution time.
F
Let N be the total number of images collected from F pistols, expressed as N = Z Ny,
1=l

with each image represented by a 7-dimensional feature vector z extracted from the ROI. The
feature vector extracted from the pistol f"is denoted as zg, where g=1,2,3,..., Ny. The

identification process is performed by discriminating the image into pistol f utilizing the
minimum Mahalanobis distance between the selected OLMI features vector z and the class

centroid Z > formulated as Eq. (12).

H

R, =argn}i_n[2(e'h(z—zf))2J (12)

h=1

where e, represents the H eigenvectors of W B with & <min(H,7). The matrices W and

B denote the within-classes and between-classes variance-covariance matrices, respectively.
Mathematically, W, B, Z #» and Z denote as Egs. (13)-(16), respectively.
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F N, _ _

W= (2 ~Zs) (24 ~Zy) (13)
f=lg=1
F

B:E(zf_z)(zf_z)v (14)

1 Nf

Z,=— > z (15)
F Ny
ZZng

z-1=5 (16)
DNy
1=l

4.5. Evaluation and deployment

The principal objective of the evaluation phase was to assess the effectiveness and robustness
of the FLDA-based ballistic identification algorithm. To achieve this, an FLDA algorithm was
implemented utilizing the Statistical Package for Social Sciences (SPSS), where identification
accuracy rates were computed based on the true identification rates derived from confusion
matrices. Since this study focused on five classes of pistols, the identification accuracy rates
were averaged across these classes to provide a comprehensive assessment. Additionally, the
stability of the FLDA-based ballistic identification algorithm was examined by employing ten
distinct random seeds, each assumed to represent a unique set of noisy image scenarios. To
determine whether the identification accuracy remained statistically significant under different
noise levels, the Wilcoxon signed-rank test was conducted.

In defining robustness, this study established a criterion requiring the average identification
accuracy rates across ten simulated scenarios to exceed 90%. Furthermore, the presence of
statistically significant differences between identification accuracy rates with and without
utilizing a denoising spatial kernel was considered indicative of the algorithm’s robustness.
This novel evaluation approach not merely assessed the algorithm’s generalization performance
but also provided insights into its stability across diverse noisy scenarios. However, specificity,
sensitivity, and F1 scores were not considered due to the inherent difficulty in establishing
thresholds for decision-making based on these measurements.

The potential superiority and authentication of the FLDA-based ballistic identification
algorithm in the evaluation phase could enable its development as a mobile application. The
utilization of a smartphone camera sensor, while less sophisticated than a dedicated ballistic
identification system, may introduce noise during image acquisition, potentially degrading
image quality. However, the development of the mobile application was not pursued at this
stage, as further authentication within a forensic ballistics laboratory was deemed necessary.
Instead, this study has been deployed as a research article to obtain constructive feedback from
experts in the field, particularly those with strong mathematics and statistics backgrounds.
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5. Analysis Results and Discussion

This section presents the analysis results obtained utilizing three distinct software tools, as
detailed in Section 4. These included the CONDOR ballistic identification system, utilized for
acquiring and storing center-firing pin images, R statistical software, employed for data
preparation, and SPSS, utilized for modeling. Notably, this study deviated from the CRISP-DM
framework outlined in Section 4, particularly in the Business Understanding, Data
Understanding, and Data Preparation phases, as these primarily involved pre-processing
acquired images. Instead, the focus was placed on the modeling and evaluation phases.

The following subsections present identification accuracy rates across different noise types,
denoising spatial kernels, and segmentation square-window sizes, supported by statistical

2
hypothesis testing. The ( %) square-window size serves as a benchmark, while the optimum

segmented square-window size proposed by the FLDA-based ballistic identification algorithm
2 2 2
is ( %) . The study explored various square-window sizes, including (r)2 , ( %) , ( %) ,

2 2 2
0 (4T o (4]

In addition, the analysis further highlights that ballistic identification accuracy is
significantly affected by several OLMIs, particularly OLMI;y, OLMI;;, OLMlIy,, OLMlIxy,
OLMI,2, OLMI3;, and OLMI,,. These moments reflect essential statistical characteristics of the
pixel intensity within the ROI. For instance, OLMI,o characterizes the center of mass of the
pixel intensity along the x-axis, while OLMI,; captures the moment of inertia along the diagonal
axis. OLMIp, and OLMlIy describe the moment of inertia along with y-axis and x-axis,
respectively. OLMI;» and OLMI,; quantify the degree of asymmetry in the pixel intensity
distribution along the y- and x-axes, and OLMI» represents the tailedness or kurtosis-like
behavior of the pixel intensity distribution across both axes. These interpretations provide a
meaningful link between the extracted features and the visual characteristics of the firing pin
impression, reinforcing the transparency of the algorithm. These interpretations underscore the
clarity and interpretability of the FLDA-based ballistic identification algorithm, attributes that
are frequently obscured in complex CNN-based architectures, particularly when applied to
limited and noisy datasets such as those encountered in real-world forensic scenarios.

5.1. Pepper noise

The simulation results presented in Table 2 assess the robustness of the FLDA-based ballistic
identification algorithm under pepper noise contamination, specifically when applying a
median denoising spatial kernel. Notably, identification accuracy rates were unavailable in
cases where mathematical constraints prevented feature extraction and identification, as
indicated by the “-”” symbol. This limitation arose in the contraharmonic mean denoising spatial
kernel, where the zero denominators in Eq. (3) constructed normalization, OLMI feature
extraction, and FLDA algorithm implementation. Similarly, the minimum-ranked ordered,
median, and maximum-ranked ordered denoising spatial kernels resulted in zero-extracted
OLMI values, making the FLDA algorithm infeasible. These findings highlight critical
operational constraints in noise-affected environments, particularly for methods reliant on
precise feature extraction.

Despite these challenges, the FLDA-based ballistic identification algorithm demonstrated
remarkable resilience against pepper noise, maintaining identification accuracy rates above 90%
for € <0.7 even without a denoising spatial kernel, provided the segmentation size of ROI was
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2
( %) . However, as the noise level increased to £€<0.9, a smaller segmentation size of

2
(%) proved more effective in preserving identification accuracy, likely by reducing noise

interference at the pixel level and enhancing feature extraction fidelity.

Interestingly, the findings suggest that denoising spatial kernels may not frequently be
necessary for managing pepper noise, as the algorithm demonstrated intrinsic robustness under
moderate noise conditions. However, for higher noise levels, selective denoising techniques
further refined identification accuracy while balancing computation efficiency. Among these
methods, this study concludes that the maximum-ranked order denoising spatial kernel with

2
¢=2, combined with an ROI size of (%) , is the most effective approach. This

configuration not merely maintained high identification accuracy but also minimized
computation cost and execution time, requiring the fewest resources compared to other
denoising spatial kernels.

These findings underscore the importance of strategic parameter selection in noise-affected
ballistic identification, demonstrating that ROI segmentation and denoising kernel selection
must be optimized simultaneously to achieve the best balance of accuracy, efficiency, and
computational feasibility.

Table 2: Enhancing identification accuracy: Impact of denoising spatial kernels and segmentation window
size on pepper noise levels

Identification accuracy rates (%) at noise level of & (standard deviation (%))

Kernel r s
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
Without kernel 7 R 94.32 94.32 94.44 94.20 93.84 92.56 92.08 89.69 83.12
2 (0.37) (0.41) (0.58) (0.66) (0.69) (1.00) (1.11) (1.16) (1.84)
Contraharmonic Mean 7 | 94.84 i i . . i i
(1=0.5) 2 (0.23)
5 94.92 94.96 95.12 95.08 B B
(0.19) (0.21) (0.17) 0.27)
3 95.08 95.04 95.16 95.16 94.88 94.76 B
(0.33) (0.21) (0.13) (0.13) (0.32) (0.13)
4 95.20 95.20 95.08 95.12 94.84 94.56 94.52
(0.19) (0.00) (0.19) 0.17) (0.40) (0.39) 0.27)
5 95.16 95.20 95.20 95.16 94.68 94.88 94.64 94.80
(0.23) (0.00) (0.19) (0.13) (0.19) (0.32) (0.34) (0.38)
6 95.44 95.32 95.20 95.20 95.00 94.96 94.80 95.12
(0.34) 0.27) (0.00) (0.00) (0.43) (0.21) (0.33) 0.37)
7 95.56 95.52 95.36 95.24 95.12 95.08 95.00 94.88 95.08
(0.40) (0.32) 0.21) (0.13) (0.53) (0.19) (0.21) (0.45) (0.53)
Contraharmonic Mean 7 | 94.92 i i ) ) i i
(1=1.0) 2 (0.46)
5 94.84 94.88 95.12 95.12 : :
(0.31) (0.13) (0.13) (0.18)
3 94.96 95.04 95.16 95.12 94.76 94.92 :
(0.43) 0.21) (0.13) 0.17) (0.35) (0.19)
4 95.00 95.28 95.28 95.16 94.84 95.04 94.84
(0.43) 0.17) 0.17) (0.13) (0.55) (0.21) (0.30)
5 95.16 95.28 95.36 95.24 95.08 95.04 94.84 94.88
(0.40) (0.32) (0.21) (0.23) (0.46) 0.21) (0.30) 0.37)
6 95.16 95.52 95.40 95.40 95.44 95.08 95.20 94.88
(0.35) (0.17) (0.21) (0.28) 0.21) 0.27) 0.27) (0.41)
7 95.48 95.60 95.48 95.44 95.20 95.08 95.24 95.04 94.60
(0.19) 0.27) (0.19) (0.28) 0.27) (0.38) (0.30) (0.60) (0.69)
Contraharmonic Mean / | 95.12 i i ) ) i i
(1=15) 2 0.25)
2 94.80 94.88 95.12 95.12 } }
(0.33) (0.17) (0.17) 0.17)
3 95.20 95.12 95.20 95.12 95.12 94.76 }
(0.33) (0.17) (0.00) 0.17) (0.32) (0.23)
4 94.88 95.24 95.36 95.24 95.12 94.92 94.68

025  (0.13)  (0.28)  (0.30) (045  (0.19)  (0.38)
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Table 2 (Continued)
95.04 9540 9536  95.40 9512 94.92 94.88  94.72

3 042)  (0.28)  (0.28)  (0.54)  (0.32)  (0.38)  (0.32)  (0.49)

p 9536 9532 9528 9524 9524 9472  94.68 9492
039  (027)  (0.32)  (0.30)  (0.48)  (0.41)  (0.46)  (0.38)

; 9532 9540 9524 9560  94.68  94.88 9480 9448  94.68

033  (021)  (030)  (0.33)  (0.27)  (0.49)  (0.38)  (0.49)  (0.65)

%o 9460 9436 9404 9000 82838  73.00 5868 4452 3032

2 0.63)  (0.51)  (0.97)  (0.96)  (0.90)  (2.04)  (2.65)  (2.58)  (2.67)
9460 9404 9348 8840 7052 5144 3612  28.60

Median

2 043)  (0.67)  (0.65)  (17)  (127)  (3.02)  (2.03) (131

3 9440 9324 9340 8852 5944 3868  29.08  21.96
0.65)  (0.44)  (0.51)  (127) (249  (3.86)  (2.13)  (0.74)

s 9444 9344 9332 9028 5340  31.84 2560 _
035)  (047)  (0.76)  (1.28)  (2.10)  (2.74)  (1.89)

s 93.76 9340  93.08 9212 49.16 3024 2224 _
0.63)  (0.54)  (046)  (1.10)  (3.76)  (2.95)  (0.80)

p 9400 9320  93.08 9172 4516 2872 ] _
053)  (042)  (0.73)  (1.00)  (2.69)  (2.88)

; 93.88 9306 9312 9232 4324 2648 ) )

0.42)  (0.44)  (0.67)  (0.88)  (2.19)  (2.94)
0 %o 9472 9492 9488 9460 9392 9196 8592 7296  51.96
3 2 045 (0190  (0.41)  (034)  (1.06)  (1.21)  (L10)  (2.67)  (2.40)
94.88 9480 9500 9480 9432 9276  80.04 5604  34.12

2 (0.42) (0.28) (0.45) (0.37) (0.85) (1.09) (1.34) (3.60) (3.20)
3 95.04 95.00 94.84 95.12 94.24 92.68 76.76 44.16 25.20
(0.54) (0.21) (0.40) (0.59) (0.63) (0.78) (2.15) (2.68) (1.79)
4 95.00 94.96 94.96 95.28 94.24 93.08 76.48 37.88 25.24
(0.47) (0.28) (0.28) 0.37) (0.63) (0.68) (2.86) (3.33) (1.75)
5 95.32 95.00 94.88 94.64 93.92 93.12 75.84 34.24
(0.50) (0.43) (0.32) (0.51) (0.59) (0.56) (2.30) (2.87) .
6 95.32 94.96 94.76 94.56 94.08 93.28 78.60 30.60 :
(0.33) (0.39) (0.44) (0.21) (0.75) (0.59) (2.02) (1.81)
7 95.20 94.80 94.72 94.40 93.72 92.88 80.00 30.36 :
(0.53) (0.42) (0.53) (0.42) (0.73) (0.86) (1.53) (2.49)
Maximum 7 1 94.60 94.48 94.60 94.76 94.88 94.52 94.32 93.60 87.92
2 (0.28) (0.41) (0.28) (0.30) (0.25) (0.27) 0.37) (0.38) (1.65)
2 93.76 93.56 93.52 93.76 94.12 93.88 94.04 93.68 93.40
(0.47) (0.58) (0.45) (0.47) (0.33) (0.27) (0.44) (0.41) (1.02)
3 93.24 93.40 93.48 93.72 93.52 93.36 93.36 93.28 93.28
(0.61) (0.57) (0.60) (0.27) (0.56) (0.43) (0.51) (0.53) (1.03)
4 92.84 93.20 93.48 93.20 93.28 93.08 93.20 93.20 93.52
(0.23) (0.46) (0.57) (0.42) (0.70) (0.57) (0.60) (0.82) (0.90)
5 92.48 92.88 93.24 93.04 93.08 93.20 93.12 93.28 92.64
(0.59) (0.62) (0.87) (0.57) (0.80) (0.90) (0.98) (0.56) (0.87)
6 92.12 92.48 93.04 93.20 92.72 93.48 92.88 92.76 91.84
(0.57) (0.41) (0.74) (0.75) (1.25) (0.94) (0.80) (1.14) (0.93)
7 91.88 92.72 92.64 92.96 92.36 92.52 92.44 91.88 91.44
(0.68) (0.56) (0.85) (1.00) (1.09) (1.02) (1.01) (0.50) (0.89)
Without kernel 7 : 94.16 94.40 93.88 94.32 93.92 93.88 93.68 92.80 90.88
4 (0.54) (0.63) (0.46) (0.56) (0.65) (0.80) (0.67) (1.32) (1.33)
Contraharmonic Mean / | 94.04
(1=05) 4 (0.48) ) ) ° ° ) ) B °
5 94.04 94.16 94.20 94.40
(0.76) (0.47) (0.28) (0.38) ) B B ) .
3 94.56 94.88 94.32 94.32 94.64 94.92
(0.39) (0.41) (0.32) (0.32) (0.34) (0.19) B ) .
4 94.52 94.68 94.64 94.68 94.48 94.96 94.84 ) :
(0.60) (0.53) (0.28) (0.19) (0.25) (0.34) (0.23)
5 94.68 95.00 94.76 94.76 94.84 95.00 94.76 94.88 :
(0.65) (0.47) (0.23) 0.23) (0.35) (0.21) (0.13) (0.25)
6 94.96 94.96 94.64 94.76 94.96 95.12 94.88 94.76 :
(0.34) (0.51) (0.43) (0.40) (0.39) (0.25) (0.17) (0.48)
4 94.80 94.68 94.72 94.88 94.80 95.16 95.40 95.08 95.28
(0.46) (0.46) (0.32) (0.25) (0.46) (0.40) (0.34) 0.19) (0.41)
Contraharmonic Mean 7 | 94.00
(/=1.0) 4 (0.63) B B . . B B ) .
5 94.56 94.48 94.24 94.28
(0.51) (0.32) (0.28) (0.42) . ° ° ) .
3 94.76 94.72 94.72 94.44 94.92 94.84
(0.30) (0.53) 0.37) (0.40) 0.27) (0.23) ° ) .
4 94.80 94.64 94.76 94.72 94.88 94.84 94.96 } :
(0.33) (0.34) (0.35) (0.25) (0.25) (0.23) (0.21)
5 94.76 94.92 94.84 94.84 94.80 94.84 94.84 94.96 :
(0.40) (0.38) (0.35) (0.35) (0.42) (0.23) (0.24) (0.34)
6 94.96 94.84 94.84 94.68 94.96 95.00 94.80 95.12 :

0.63)  (030)  (0.44)  (0.42)  (0.39)  (0.28)  (0.63)  (0.49)
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Table 2 (Continued)

7 95.04 94.92 94.68 94.68 95.00 95.28 95.32 95.08 95.36
(0.51) (0.38) (0.42) (0.42) (0.39) (0.49) (0.38) (0.42) (0.57)
Contraharmonic Mean V | 94.40
(1=15) 4 (0.46) - - B B ) ) B B
5 94.44 94.68 94.60 94.56 ) . . ) .
(0.55) (0.19) (0.47) (0.28)
3 94.80 94.72 94.56 94.68 94.76 94.84 B ) :
(0.42) (0.41) (0.28) (0.46) (0.30) (0.30)
4 94.92 94.92 94.92 94.92 95.04 95.12 95.08 ) :
(0.33) (0.50) (0.33) 0.27) (0.51) (0.17) (0.27)
5 94.72 94.96 94.64 94.88 95.12 95.04 94.88 95.00 :
0.37) (0.39) (0.34) (0.32) (0.45) (0.43) (0.41) 0.47)
6 94.96 94.76 94.84 94.84 94.92 95.28 94.96 94.88 :
(0.43) (0.35) (0.40) (0.40) (0.57) 0.37) (0.60) (0.84)
7 95.00 95.00 94.96 95.08 95.24 95.48 95.40 95.08 95.60
(0.39) (0.28) (0.28) (0.33) (0.35) (0.33) (0.74) (0.84) (0.60)
Median 7 1 93.84 94.24 94.04 92.96 92.04 86.96 72.12 50.44 31.68
4 (0.43) (0.74) (0.72) (1.04) (1.63) (2.13) (2.00) (2.91) (2.48)
2 93.76 94.12 94.32 93.04 85.24 62.36 37.92 26.88 :
(0.76) (0.33) (0.59) (1.21) (1.95) (2.30) (1.36) (1.66)
3 93.76 94.56 95.24 94.44 74.89 43.80 29.20 ) :
(0.69) (0.43) (0.72) (0.74) (2.32) (2.06) (2.71)
4 94.12 94.84 95.28 95.32 65.12 33.08 24.68 ) :
(0.50) (0.89) (0.73) (1.13) (3.19) (3.89) (1.35)
5 94.36 94.80 95.96 95.84 56.28 30.60 ) ) }
(0.55) (0.53) (0.55) (0.76) (3.38) (2.64)
6 94.48 95.96 96.44 96.56 52.58 27.52 ) ) }
(0.49) (0.67) (0.55) (0.95) (3.46) (2.39)
7 95.24 96.32 96.76 96.88 45.88 25.64 ) ) }
(0.44) (0.49) (0.51) (0.49) (3.27) (1.58)
0 V 1 94.20 93.96 94.16 94.32 94.68 94.36 93.48 85.52 62.64
3 4 (0.28) (0.30) (0.43) (0.37) (0.63) (0.83) (1.27) (1.45) (1.76)
2 94.36 94.20 94.24 94.32 94.60 94.04 90.76 67.52 35.16
(0.51) (0.43) (0.21) 0.41) (0.51) (0.95) (0.95) (4.13) (1.53)
3 94.20 94.20 94.28 94.28 94.68 95.16 88.88 52.28 27.76
(0.63) (0.43) (0.33) 0.27) (0.53) (0.67) (1.20) (3.43) (1.98)
4 94.36 94.12 94.08 94.36 94.88 95.32 87.56 40.76 22.84
(0.35) (0.71) (0.41) (0.44) (0.53) (0.46) (2.30) (2.72) (0.61)
5 94.28 94.04 94.08 94.16 94.12 95.40 88.52 36.02 :
(0.71) (0.61) (0.41) (0.54) (0.60) (0.71) (2.07) (3.15)
6 93.52 93.72 94.00 94.24 95.12 95.80 89.64 31.10 :
(0.43) (0.46) (0.42) (0.51) (0.62) (0.83) (1.42) (3.15)
7 94.00 93.88 93.96 94.88 95.16 96.64 90.28 29.76 :
(0.42) (0.42) (0.40) (0.59) (0.40) (0.47) (1.47) (2.86)
Maximum 7 1 94.52 94.24 94.24 94.16 94.20 94.08 94.08 94.44 93.48
4 (0.60) (0.47) (0.34) (0.28) (0.34) (0.37) (0.67) (0.51) (0.76)
5 95.28 94.88 94.76 95.16 95.00 94.72 94.76 94.60 94.56
(0.77) (0.32) (0.55) (0.55) 0.34) (0.75) (0.40) (0.34) 0.57)
3 95.24 95.36 95.40 95.20 95.68 95.52 94.80 94.96 94.80
(0.58) (0.43) (0.28) (0.38) 0.37) (0.49) (0.65) (0.66) (0.60)
4 95.32 95.32 94.84 95.40 95.40 95.24 95.32 95.12 94.64
(0.33) (0.42) (0.51) (0.43) (0.54) (0.64) (0.68) (0.41) (0.69)
5 94.48 94.76 94.72 94.88 95.48 95.48 95.40 95.36 95.08
(0.49) (0.35) (0.70) (0.59) (0.42) (0.50) (0.83) (0.80) (0.53)
6 94.80 94.76 95.44 95.72 95.24 95.24 95.60 96.04 95.84
(0.73) (0.44) (0.60) (0.53) (0.61) (0.51) (0.63) 0.67) (0.69)
7 95.04 95.56 95.72 96.04 95.72 95.64 96.12 95.72 95.88
(0.54) (0.64) (0.33) (0.44) (0.53) (0.69) (0.73) (0.82) (1.12)

*Note: The bold values indicate a statistically significant difference in identification accuracy rates between the algorithm with and without

denoising spatial kernel

5.2.S8alt noise

Table 3 presents the average identification rates and standard deviations across ten distinct
simulated salt noise image scenarios, considering variations in denoising spatial kernels,
segmentation window sizes, and kernel window sizes. The analysis reveals the FLDA-based
ballistic identification algorithm achieves identification accuracy rates exceeding 90% at noise

2
levels #=0.2 and €=0.4, when utilizing segmentation square-window sizes of ( %) and

2
( %) , respectively, without the application of denoising spatial kernels. However, the results
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indicate that the algorithms exhibit reduced robustness in the absence of denoising spatial
2 2
kernels. Notably, the segmentation square-window size of ( %) outperforms ( % ) , which

is consistent with findings reported in previous literature (Chuan et al. 2013b).
At higher noise levels, particularly at €=0.9, the application of appropriate denoising
spatial kernels leads to substantial improvements in identification accuracy, especially when

2
employing a segmentation square-window size of ( %) . The analysis identifies several

effective denoising spatial kernels, including the contraharmonic mean denoising spatial kernel
with order /=-0.5 for ¢=6 and 7, as well as the contraharmonic mean denoising spatial

kernel with order /=-1.0 for ¢=4,5,6 and 7. Furthermore, the contraharmonic mean
denoising spatial kernel with order / =—1.5 demonstrates strong performance for ¢ =3, 4, 5, 6,

and 7, while the minimum-ranked ordered denoising spatial kernel proves effective with for
¢=3,4,5, and 6. The findings presented in Table 3 further support these observations.

From a computational perspective, the implementation of a denoising spatial kernel with a
smaller window size is advantageous due to its reduced computational cost and shorter
execution time compared to larger window sizes. Among the tested denoising approaches, the
contraharmonic mean denoising spatial kernel with order /=—1.5 and ¢=3 emerges as
particularly effective in mitigating salt noise. However, a more comprehensive evaluation
reveals that the minimum-ranked ordered denoising spatial kernel consistently outperforms
other methods, demonstrating superior identification accuracy, particularly at moderate noise
levels where € <0.5. This suggests that the minimum-ranked ordered denoising spatial kernel
provides the most robust and reliable denoising performance for salt noise conditions.

Table 3: Enhancing identification accuracy: Impact of denoising spatial kernels and segmentation window
size on salt noise levels

Identification accuracy rates (%) at noise level of & (standard deviation (%))

Kernel r 3
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
) 9312 9264  89.84 8620 8324 8048 7424 6716 5456
Without kernel P (1.06)  (2.01)  (143) (175  (1.68)  (L61)  (1.92)  (1.69)  (3.58)
Contraharmonic Mean . 9440 9391 93.60  93.64  91.04 8948 8636  80.00  69.32
(1=-05) 2 ©0.78)  (0.71)  (0.65  (0.91)  (1.18)  (137) (215 (256  (249)
) 9432 9388 9332 9348  91.64  90.64  87.12 8240  70.76
0.56)  (0.82)  (1.18)  (0.76)  (1.15)  (1.04)  (147)  (1.12)  (2.06)
3 9440 9420 9376 9324 9240  90.84 8840 8268  70.12
0.46)  (034)  (0.54)  (0.74)  (2.01)  (0.81)  (148) (252  (1.79)
4 9452 9416 9332 9364 9196  91.00  88.16 8208  71.68
0.63)  (0.60)  (0.92)  (0.74)  (1.58)  (0.93)  (222)  (1.86)  (2.56)
s 9424 9440  93.84 9352 9212  90.04 8896  83.00  72.60
©051)  (090) (125  (1.51) (.54 (117 (196) (267  (3.11)
6 9448 9396 9320 9320  92.08  90.80 8752  83.00 7240
©0.73) (074 (0.88)  (0.63) (1.17) (L7 (156)  (128)  (2.53)
; 9412 9412 9396 9328 9172 9040 8792 8360  73.60

057 ©71) (074 (082  (1.28)  (1.47) (148  (261)  (1.88)

Contraharmonic Mean % 9436 9456  93.96  93.84  93.00 9212 9120 8684  77.44
(1=-10) 2 055 (039  (0.64)  (0.57)  (0.98) (1.27)  (1.98)  (137)  (2.51)

94.32 94.28 94.00 94.20 93.52 93.24 92.32 88.52 80.12

2 0.41)  (©71)  (0.80)  (0.60)  (1.20)  (0.64)  (133)  (1.39)  (1.71)
3 9380 9400  93.96 9400  93.84 9272  91.60  89.84  80.80
057) (038  (0.89)  (0.75)  (0.76)  (0.80)  (1.19)  (148)  (3.02)
4 9384 9404 9412 9400 9372  93.08 9232 8936  81.88
0.66) (035  (0.76)  (0.63)  (1.07)  (L15)  (1.80)  (1.15)  (1.71)
s 9372 9368 9424 9420 9296  92.88 9172  89.88  80.24
0.68) (045  (0.85)  (0.47)  (0.43)  (1.05)  (127) (125  (2.13)
6 93.60  93.64  93.60 9372  92.88 9248 9148 8944  81.08
053)  (0.64)  (0.53)  (0.68)  (0.98)  (0.88)  (0.80)  (0.47)  (1.00)
; 93.68 9380  93.64 9372 9348 9324 9112  89.64 8248

056)  (0.74)  (0.48)  (0.53)  (0.84)  (1.04)  (1.22)  (197)  (2.78)
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Table 3 (Continued)

Contraharmonic Mean

(1=-15)

Minimum

Median

Without kernel

Contraharmonic Mean
(1=-05)

242

%

A
A

94.32
(0.25)

93.72
(0.38)
93.20
(0.42)
93.36
(0.28)
93.36
(0.28)
93.44
(0.43)
93.32
(0.42)
93.08
(0.38)
92.96
(0.43)
91.96
0.51)
88.60
(0.78)
86.68
(0.76)
86.68
(0.76)
86.68
(0.76)
93.76
(0.43)
93.36
(0.34)
93.36
(0.28)
93.40
(0.28)
93.44
(0.28)
93.48
(0.33)
93.24
(0.46)
94.88
0.32)
94.80
0.27)
94.52
(0.42)
94.36
(0.35)
94.16
(0.43)
94.28
0.27)
94.56
(0.39)
94.28
(0.53)

94.48
(0.59)

94.84
(0.44)
95.00
(0.54)
95.48
(0.46)
95.64
(0.44)
96.08
0.37)
95.80
(0.54)

94.08
(0.25)

93.88
(0.53)
93.84
(0.47)
93.24
(0.30)
93.48
(0.33)
93.56
(0.55)
93.24
(0.40)
93.00
(0.28)
92.84
(0.48)
91.72
(0.63)
89.04
(0.76)
86.92
(0.50)
86.36
(1.15)
85.24
(1.04)
94.28
(0.33)
93.56
(0.30)
93.60
(0.42)
93.84
(0.28)
93.60
(0.27)
93.52
(0.45)
93.44
(0.34)
94.20
(0.51)
94.88
0.32)
94.40
0.27)
94.44
(0.35)
94.44
(0.44)
94.80
(0.50)
94.56
(0.66)
94.20
(0.63)

94.64
(0.47)

94.68
0.27)
95.12
(0.41)
95.12
(0.49)
95.28
(0.41)
95.44
0.51)
96.04
0.72)

94.04
(0.58)

93.88
(0.42)
93.80
(0.60)
93.52
0.37)
93.56
(0.58)
93.64
(0.40)
93.28
(0.53)
93.36
(0.34)
92.92
(0.42)
91.80
(0.57)
89.04
(1.15)
87.52
(0.80)
86.08
(1.14)
84.84
(1.17)
94.28
(0.42)
93.88
(0.38)
93.72
(0.19)
93.84
(0.34)
93.72
(0.60)
93.48
(0.53)
93.20
(0.50)
90.60
(1.23)
93.88
(0.63)
95.00
0.21)
94.84
(0.48)
95.12
(0.25)
95.20
(0.57)
95.40
(0.51)
94.20
(0.76)

94.24
0.71)

94.52
(0.53)
94.56
0.51)
95.20
(0.96)
95.00
(0.39)
95.48
(0.87)
95.48
(0.50)

94.44
(0.55)

94.12
(0.42)
93.96
(0.55)
93.76
(0.34)
93.76
(0.69)
93.48
(0.65)
93.24
(0.55)
93.04
(0.34)
92.92
0.73)
92.52
(0.60)
89.60
(0.84)
87.72
(0.76)
86.60
(1.12)
85.04
(1.34)
92.96
(0.85)
94.20
(0.34)
93.76
(0.34)
94.08
0.77)
93.96
(0.40)
93.76
(0.87)
93.52
(0.59)
80.08
(3.23)
81.52
(1.62)
84.72
(1.72)
88.76
(1.01)
91.48
1.02)
92.72
1.01)
94.12
(0.87)
94.08
(1.10)

94.44
(0.40)

94.52
(0.53)
95.12
(0.59)
95.12
(0.49)
95.00
(0.83)
95.48
(0.80)
95.60
0.57)

94.52
(0.80)

93.72
(0.96)
94.12
(0.53)
93.88
(0.76)
93.40
(0.63)
93.36
(0.95)
93.48
(0.73)
93.40
(0.57)
92.88
(0.41)
92.36
(0.61)
89.96
(0.89)
87.60
(0.68)
86.20
(1.30)
85.44
(1.21)
89.64
(1.35)
94.08
(0.73)
94.56
(0.76)
93.80
(0.76)
94.12
(0.53)
94.24
(0.83)
94.32
(0.73)
66.04
(2.53)
59.04
(4.35)
53.60
(3.78)
50.68
(1.89)
45.84
(4.00)
45.88
(4.25)
45.60
(3.20)
93.32
0.78)

94.04
(1.01)

94.36
(0.79)
94.12
(0.82)
94.88
(1.03)
94.76
(0.87)
94.92
(0.65)
95.28
(0.75)

94.00
(0.63)

93.72
0.73)
93.92
0.73)
93.52
(0.80)
93.36
(1.00)
93.32
(0.50)
92.92
(0.60)
92.48
(0.94)
92.68
(0.68)
92.88
(0.82)
90.12
(1.08)
89.16
(1.34)
86.28
(1.18)
85.20
(0.57)
81.24
(1.80)
85.96
(1.97)
91.80
(0.81)
94.16
(0.78)
94.24
(0.89)
94.20
(0.66)
94.36
(0.67)
56.52
(3.30)
43.52
(2.02)
37.84
(2.87)
35.48
(2.04)
32.04
(1.90)
32.12
(2.62)
30.12
(0.23)
92.08
(1.58)

93.76
(0.60)

94.28
(0.68)
94.64
(0.76)
94.48
(0.98)
94.60
(0.98)
94.56
(1.02)
94.64
(1.20)

92.36
0.72)

92.72
0.77)
93.44
(0.78)
92.80
(0.96)
93.16
0.72)
92.80
(0.63)
91.40
(1.20)
90.84
(1.29)
92.72
(0.59)
92.28
(0.65)
90.84
(1.02)
89.20
(1.40)
86.44
(1.47)
84.72
(1.45)
66.72
(3.55)
63.80
(2.89)
64.96
(1.72)
65.00
(1.68)
68.08
(2.44)
72.24
(1.93)
76.36
(1.80)
44.92
(3.19)
35.80
(2.95)
34.12
(2.95)
32.56
(2.14)
30.84
(1.30)
30.12
(1.18)
30.12
(1.22)
90.00
(1.26)

92.84
(0.89)

94.12
(0.96)
94.16
(0.80)
93.48
(0.98)
94.36
(1.02)
94.56
(0.83)
94.32
(0.65)

88.72
(1.79)

91.84
(1.43)
92.44
(1.01)
92.24
(1.09)
92.52
(0.87)
92.08
(1.16)
92.76
(1.51)
82.68
(2.55)
91.64
(0.76)
92.24
.21
90.64
(0.71)
89.16
(1.01)
86.88
(1.22)
85.32
(1.28)
51.60
(3.19)
45.04
(1.96)
40.00
(2.90)
37.12
(3.25)
34.20
@21
33.40
@.71)
32.92
(2.39)
37.88
(2.27)
32.80
(2.57)
28.08
(1.41)
27.44
(1.25)
36.72
(0.98)
26.96
(0.83)
27.24
(0.74)
86.92
(1.41)

92.36
(0.97)

93.08
(1.19)
92.64
(1.44)
93.64
(1.04)
92.76
(1.54)
93.24
(1.43)
93.48
(1.18)

82.20
(3.54)

85.44
(1.99)
93.56
(3.53)
86.96
(2.75)
86.40
(1.46)
87.20
(1.57)
86.56
(1.52)
63.88
(3.67)
78.32
(1.94)
89.80
(1.28)
91.20
(1.25)
89.92
(1.89)
88.64
(1.36)
88.60
(1.24)
39.92
(3.57)
33.16
(3.28)
30.44
(2.27)
30.68
(1.74)
27.60
(3.23)
27.12
(1.67)
26.60
(1.68)
3236
(2.09)
26.64
(1.80)
27.00
(2.38)
26.00
(1.47)
27.08
(1.39)
25.52
(1.88)
25.44
(1.82)
79.60
(2.32)

87.96
(0.74)

89.40
(1.25)
89.32
(1.69)
89.64
(1.01)
89.76
(1.43)
90.52
(1.33)
90.16
(0.93)
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Table 3 (Continued)

Contraharmonic Mean

(1=-10) 78

Contraharmonic Mean

(1=-15) 78

Minimum % 1

Median % 1

6

7

94.60
(0.43)

95.04
(0.28)
95.36
(0.28)
95.56
(0.23)
95.72
0.27)
96.00
(0.33)
96.40
(0.38)

94.92
0.27)

94.88
(0.53)
95.28
(0.25)
95.64
(0.30)
96.12
(0.38)
96.88
(0.25)
97.20
(0.19)
94.92
0.27)
94.84
(0.30)
96.04
0.13)
96.04
0.13)
96.04
(0.40)
95.72
(0.38)
94.60
(0.43)
94.88
0.25)
94.88
0.37)
95.20
(0.33)
95.96
(0.23)
96.36
(0.35)
97.12
0.17)
97.20
(0.00)
94.76
0.13)
94.68
(0.19)
94.72
(0.25)
94.76
0.23)
95.24
(0.30)
95.56
(0.35)
95.32
(0.33)

94.56
(0.28)

94.84
0.23)
95.28
0.37)
95.44
(0.43)
95.48
(0.33)
96.12
(0.42)
96.60
(0.39)

94.84
(0.40)

95.08
(0.42)
95.60
(0.33)
95.36
(0.34)
95.92
(0.25)
96.92
(0.42)
96.80
0.27)
94.60
(0.54)
95.16
(0.44)
96.08
0.17)
96.08
(0.25)
96.16
(0.28)
95.60
0.27)
94.76
(0.40)
94.76
(0.35)
94.72
0.32)
94.84
(0.55)
95.56
(0.55)
96.32
(0.45)
97.08
(0.19)
97.16
(0.13)
94.60
(0.43)
94.64
(0.28)
94.52
(0.19)
94.52
(0.19)
94.56
(0.34)
94.88
(0.41)
94.88
(0.53)

94.60
(0.69)

94.60
(0.39)
95.20
(0.78)
95.28
0.37)
95.64
(0.48)
95.72
(0.38)
96.16
0.57)

94.52
(0.50)

94.76
(0.40)
95.56
(0.48)
95.48
(0.42)
96.08
(0.41)
96.68
(0.42)
97.04
(0.34)
94.76
(0.58)
95.08
(0.38)
96.04
(0.30)
96.24
(0.34)
96.48
0.37)
95.56
(0.44)
95.08
(0.60)
94.48
(0.32)
94.72
(0.56)
94.80
(0.50)
95.12
(0.53)
95.68
0.37)
96.16
(0.28)
96.92
0.27)
93.88
0.91)
94.36
(0.48)
94.56
(0.43)
94.64
(0.51)
94.24
(0.47)
94.44
(0.64)
94.52
(0.57)

94.76
(0.40)

94.92
(0.38)
94.88
(0.41)
95.08
(0.38)
95.60
(0.68)
95.64
0.67)
95.96
(0.55)

94.84
(0.48)

94.84
0.72)
95.40
(0.54)
95.68
(0.53)
96.12
(0.53)
96.48
(0.49)
96.76
(0.40)
94.56
(0.54)
94.84
(0.51)
96.16
(0.34)
96.24
(0.43)
96.20
(0.51)
95.16
(0.67)
94.52
(0.65)
94.44
0.51)
94.92
0.27)
94.84
(0.48)
95.12
(0.65)
95.72
(0.38)
95.20
(0.42)
96.08
(0.53)
92.68
(1.13)
92.52
(0.78)
93.84
(0.80)
94.12
(0.73)
94.48
(0.59)
94.32
(0.41)
94.64
(0.57)

94.80
(0.92)

94.64
(0.66)
94.68
(0.89)
94.84
(0.40)
95.24
(0.76)
95.60
(0.60)
95.40
(0.43)

94.36
(0.30)

95.04
(0.71)
95.40
(0.60)
95.08
(0.73)
95.68
0.37)
95.92
(0.67)
96.16
(0.57)
94.64
(0.63)
95.04
(0.51)
95.88
(0.50)
95.96
(0.64)
96.20
(0.63)
95.24
(0.40)
94.92
(0.89)
93.96
(0.51)
94.40
(0.63)
94.16
(0.66)
94.88
(0.41)
95.28
(0.49)
95.36
(0.57)
95.28
(0.65)
88.36
(1.90)
82.68
(1.64)
77.52
(2.32)
73.88
(1.78)
71.84
(3.09)
71.88
(2.41)
68.56
(2.69)

94.48
0.77)

94.52
(0.65)
94.70
(0.58)
94.84
0.67)
95.00
0.47)
94.92
(0.60)
95.24
(0.76)

94.52
(0.65)

94.96
(0.78)
95.08
(0.42)
95.16
(0.74)
95.28
(0.45)
95.76
0.57)
95.72
(0.53)
94.56
(0.76)
94.92
(0.84)
95.56
(0.61)
95.84
(0.54)
95.40
(0.78)
95.32
(0.38)
94.80
(0.92)
91.88
(0.73)
93.12
(0.96)
94.20
(0.43)
94.44
(0.64)
94.28
(0.46)
94.36
(0.64)
94.20
(0.66)
79.40
(3.41)
64.00
(3.35)
52.52
2.77)
43.48
(3.14)
38.08
(3.49)
33.28
(2.30)
30.08
(2.78)

94.68
(0.78)

94.44
(0.67)
94.40
(0.65)
94.44
(0.99)
94.60
(0.74)
94.80
(0.46)
95.00
(0.76)

94.96
(0.54)

94.48
(0.88)
95.00
(0.51)
94.84
(0.61)
94.96
(0.66)
95.64
(0.48)
95.32
(0.65)
94.44
(0.81)
94.96
(0.76)
95.20
(0.65)
95.72
(0.65)
95.44
(0.89)
95.12
(0.45)
94.40
(0.46)
86.08
(1.99)
85.80
(2.08)
85.84
(2.22)
87.08
(1.62)
87.84
(1.24)
89.44
(1.91)
90.36
(1.18)
66.40
(2.40)
45.12
(3.26)
35.16
@.71)
32.68
(1.33)
30.92
(1.05)
30.08
(1.01)
30.84
(0.93)

93.40
(1.05)

93.48
(1.03)
94.12
(1.16)
93.56
(0.99)
94.36
(1.09)
94.08
(1.10)
93.96
(0.67)

93.92
(0.70)

93.84
(0.66)
94.88
(0.80)
94.36
0.72)
95.00
(0.51)
94.60
(0.76)
94.84
(1.15)
92.72
(1.62)
94.24
(0.57)
94.92
(0.53)
95.00
(0.93)
95.00
(0.76)
94.84
(1.02)
94.28
1.21)
77.24
@.17)
65.04
(2.27)
59.24
(4.65)
51.00
(3.28)
45.72
(2.52)
40.28
(3.62)
38.56
(3.15)
47.40
(@.01)
30.48
(2.38)
27.28
(0.82)
27.76
(0.89)
27.68
(1.25)
27.76
(0.93)
27.68
(0.73)

90.04
(0.81)

92.20
(0.91)
91.68
(1.33)
92.24
(1.15)
92.60
(0.95)
92.64
(1.32)
92.96
(1.40)

91.68
(1.32)

93.20
(0.98)
92.92
(0.96)
93.40
(1.09)
93.76
(0.91)
93.48
(0.68)
93.12
(1.14)
83.76
(2.17)
91.04
(1.58)
94.12
(0.84)
94.64
(0.74)
94.80
(0.71)
94.72
(1.08)
93.92
(1.26)
54.68
(3.69)
37.68
(2.60)
30.84
(2.92)
27.40
(1.69)
25.80
(1.62)
25.88
(0.94)
26.08
(1.32)
29.84
(3.57)
25.24
(1.21)
25.92
(0.90)
26.16
(1.25)
25.56
(0.91)
25.33
(1.16)
25.56
(0.91)

*Note: The bold values indicate a statistically significant difference in identification accuracy rates between the algorithm with and without the

denoising spatial kernel.
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5.3.Salt-and-pepper noise

Building upon the findings from the pepper and salt noise analyses, this section extends the
evaluation to salt-and-pepper noise, providing a comprehensive assessment of the FLDA-based
ballistic identification algorithm. Table 4 presents identification accuracy rates for images

processed utilizing an ROI sized at ( % ) and ( % ) The analysis reaffirms the algorithm’s
robustness, achieving identification rates exceeding 90% across varying noise levels.

Specifically, identification surpasses this threshold at <0.4 for ( % )2 and 0<0.6 for

( % )2 , further validates the superiority of the smaller ROI size in maintaining identification
accuracy under noise contamination.

Moreover, as observed in the pepper and salt noise analyses, performance improvements are
evident when appropriate denoising spatial kernels are employed. Table 4 highlights that noise
levels ranging from #<0.6 to <0.8, the application of denoising techniques significantly
enhance identification accuracy. Among the evaluated approaches, the median denoising spatial
kernels with ¢ =5 proves to be the most effective, offering a favorable balance between

computational efficiency and noise suppression. Notably, this kernel exhibits a shorter
execution time compared to kernels with ¢ =6 and ¢ =7, establishing it as the optimal

universal denoising technique for mitigating salt-and-pepper noise in this study.

Table 4: Enhancing identification accuracy: Impact of denoising spatial kernels and segmentation window
size on salt-and-pepper noise levels

Identification accuracy rates (%) at noise level of & (standard deviation (%))

Kernel r
erne ° 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
Without kernel 7 B 94.36 93.16 92.44 90.40 85.40 77.20 69.48 55.04 41.56
2 (0.97) (0.79) (1.42) (1.57) (2.50) (2.60) (3.05) (2.26) (3.91)
Median 7 1 94.64 94.56 94.40 94.08 91.40 84.68 72.48 58.56 40.48
2 (0.21) (0.51) (0.68) 0.77) (1.05) (1.78) (3.87) (1.84) (3.26)
5 94.52 94.60 94.28 94.28 94.40 92.84 81.64 63.64 41.28
(0.19) (0.28) (0.46) (0.38) (0.57) 0.74) (2.49) (1.83) (2.10)
3 94.12 94.40 94.36 94.36 94.40 93.92 88.92 66.92 42.24
(0.33) (0.38) (0.55) (0.48) 0.42) (0.92) (1.52) (2.44) (3.06)
4 93.84 93.96 94.32 94.32 94.36 94.00 92.28 75.80 43.20
(0.34) (0.44) (0.49) (0.41) (0.55) (0.53) (0.80) (2.55) (1.87)
5 93.76 93.68 94.40 94.24 94.48 93.84 93.52 83.40 46.12
(0.34) (0.32) (0.46) (0.54) (0.62) (1.05) (0.75) (1.52) (2.32)
6 93.84 94.32 94.44 93.80 94.28 93.96 93.36 88.40 48.20
(0.47) (0.65) (0.44) (0.39) (0.68) (0.61) (0.66) (2.30) (2.10)
7 94.40 94.00 94.36 94.12 94.64 94.08 93.24 90.80 51.76
(0.63) (0.53) (0.85) (0.33) (0.51) (0.59) (0.83) (1.80) (2.55)
Without kernel 7 R 94.44 94.20 94.32 93.36 92.96 90.84 87.40 77.64 54.36
4 (0.30) (0.43) (0.80) (0.80) (1.10) (0.95) (1.94) (2.87) (3.08)
Median / 1 94.52 94.64 94.60 94.40 93.96 93.48 90.00 79.00 53.36
4 (0.33) (0.34) (0.28) (0.38) 0.74) (1.07) (1.52) (2.20) (4.00)
5 94.52 94.64 94.64 94.28 94.52 94.16 92.08 84.20 57.48
(0.19) (0.34) (0.39) (0.42) (0.57) (0.98) (0.53) (3.13) (1.96)
3 94.76 94.84 94.64 94.60 94.92 94.76 93.88 88.20 59.32
(0.30) (0.30) (0.51) (0.63) (0.46) 0.72) (0.53) (1.52) (2.71)
4 95.20 94.96 94.52 94.96 94.88 94.72 94.40 89.88 60.96
(0.50) (0.47) (0.46) (0.34) 0.17) (0.41) (1.03) (1.49) (2.98)
5 95.56 95.68 95.20 94.84 94.68 94.80 94.40 92.20 63.12
(0.35) (1.37) (0.53) (0.69) (0.63) (0.68) (0.73) (1.86) (2.57)
6 95.76 95.84 95.52 95.20 95.24 95.16 94.76 92.96 66.28

(0.28) (0.34) (0.41) (0.42) (0.48) (0.40) (0.74) (0.89) (3.60)

95.56 95.40 95.48 95.12 95.08 95.28 95.08 94.12 67.76

(0.51) (0.69) (0.27) (0.49) (0.57) (1.11) (0.38) (1.32) (3.08)
*Note: The bold values indicate a statistically significant difference in identification accuracy rates between the algorithm with and without
denoising spatial kernel.
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6. Conclusion and Recommendations for Future Work

This study provides a comprehensive evaluation of statistical computing techniques for forensic
firearm identification, specifically assessing the robustness of the FLDA-based ballistic
identification algorithm against fixed-value impulse noise. Through the simulation of pepper,
salt, and salt-and-pepper noise at varying contamination levels (10% to 90%), this research
systematically examines the algorithm’s performance when paired with various denoising
spatial kernels. The findings reveal that the algorithm maintains high identification accuracy
rates (2 90%) for pepper and salt noise when associated with maximum-ranked and minimum-

ranked ordered denoising spatial kernels, respectively. For salt-and-pepper noise, a median

denoising spatial kernel (g2 =52) proves universally superior, striking a balance between

accuracy and computation efficiency. This study further confirms that a segmentation window
2

size of ( %) enhances identification accuracy, aligning with prior literature. Notably,

identification performance deteriorates at noise levels exceeding € =0.6, necessitating the
utilization of denoising spatial kernels to preserve forensic reliability.

These results highlight the potential of FLDA-based statistical computing techniques in
forensic applications by reducing reliance on physical verification and accelerating forensic
investigations. This study aligns with the United Nations Sustainable Development Goals
(SDGs) by advancing Artificial Intelligence (Al)-driven forensic methodologies (SDG9:
Industry, Innovation, and Infrastructure) and strengthening forensic accuracy in criminal
investigations (SDG16: Peace, Justice, and Strong Institutions), ultimately contributing to
national security and judicial efficiency. While this study establishes a statistical framework
for evaluating noise resilience in forensic firearm identification, future research could explore
expanding the dataset to mitigate overfitting and underfitting. Additionally, integrating the
FLDA-based approach into mobile forensic applications could further enhance accessibility and
operational efficiency in real-time forensic investigations.
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