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ABSTRACT 

Forensic laboratories analyze firearm-related evidence utilizing established ballistic 

identification systems such as the Integrated Ballistic Identification System (IBIS), Advanced 

Ballistics Analysis System (ALIAS), EVOFINDER Automated Ballistic Identification System, 

and CONDOR Ballistic Identification System. However, these systems require physical 

verification by experts, resulting in the process being time-consuming. Previous studies 

developed a Fisher Linear Discriminant Analysis (FLDA)-based ballistic identification 

algorithm to address this limitation, encompassing image pre-processing, feature extraction, and 

identification. This study evaluates the robustness of the FLDA-based ballistic identification 

algorithm against fixed-value impulse noise, including pepper, salt, and salt-and-pepper noise. 

A dataset of ballistic images from five Vektor Parabellum SP1 9mm pistols (Pistols A–E) was 

contaminated with noise levels ranging from 10% to 90%. The results demonstrate that the 

algorithm maintains high identification rates exceeding 90% for images with up to 90% pepper 

and salt noise, utilizing maximum-ranked and minimum-ranked ordered denoising spatial 

kernels. Similarly, high identification rates of up to 80% were achieved for salt-and-pepper 

noise. These findings highlight the robustness of FLDA-based statistical computing techniques 

in forensic firearm pattern identification, reducing reliance on physical verification and 

expediting forensic investigation. Furthermore, this study aligns with the United Nations 

Sustainable Development Goals (SDGs), particularly SDG9 (Industry, Innovation, and 

Infrastructure), by fostering Artificial Intelligence (AI)-driven forensic advancements and 

SDG16 (Peace, Justice, and Strong Institution) by strengthening forensic accuracy in criminal 

investigations, ultimately contributing to national security and judicial efficiency. 

Keywords: Fisher Linear Discriminant Analysis (FLDA); ballistic pattern identification; fixed-

value impulse noise; statistical computing; United Nations Sustainable Development Goals 

(SDGs) 

 

ABSTRAK 

Makmal forensik menganalisis bukti berkaitan senjata api dengan menggunakan sistem 

pengecaman balistik yang mantap seperti Integrated Ballistic Identification System (IBIS), 

Advanced Ballistics Analysis System (ALIAS), EVOFINDER Automated Ballistic Identification 

System, dan CONDOR Ballistic Identification System. Walau bagaimanapun, sistem-sistem ini 

memerlukan pengesahan fizikal oleh pakar, mengakibatkan proses tersebut memakan masa. 

Sorotan kajian terdahulu telah membangunkan satu algoritma pengecaman balistik berasaskan 

Analisis Pembezalayan Linear Fisher (FLDA) bagi menangani kekangan ini, yang merangkumi 

pra-pemprosesan imej, pengekstrakan fitur, dan pengecaman. Kajian ini menilai keteguhan 

algoritma pengecaman balistik berasaskan FLDA terhadap hingar dedenyut bernilai tetap, 

termasuk hingar lada, hingar garam, dan hingar garam-dan-lada. Satu set data imej balistik 

daripada lima pistol Vektor Parabellum SP1 9mm (Pistol A–E) tercemari dengan tahap hingar 

antara 10% hingga 90%. Hasil kajian menunjukkan bahawa algoritma tersebut mengekalkan 

kadar pengecaman yang tinggi melebihi 90% bagi imej yang tercemari dengan hingar lada dan 
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garam sehingga 90% tahap hingar, dengan menggunakan kernel nyahhingar reruang berpangkat 

maksimum dan minimum. Kadar pengecaman tertinggi turut tercapai bagi hingar garam-dan-

lada pada tahap hingar sehingga 80%. Penemuan ini menekankan keteguhan kaedah 

pengkomputeran statistik berasaskan FLDA dalam pengecaman pola senjata api forensik, 

mengurangkan kebergantungan terhadap pengesahan fizikal dan mempercepatkan siasatan 

forensik. Tambahan pula, kajian ini selaras dengan Matlamat Pembangunan Mampan (SDG) 

Pertubuhan Bangsa-Bangsa Bersatu, khususnya SDG9 (Industri, Inovasi dan Infrastruktur) 

melalui pemerkasaan kemajuan forensik berasaskan Kecerdasan Buatan (AI), dan SDG16 

(Keamanan, Keadilan dan Institusi Kukuh) melalui peningkatan ketepatan forensik dalam 

siasatan jenayah yang akhirnya menyumbang kepada keselamatan negara dan keberkesanan 

sistem kehakiman. 

Kata kunci: Analisis Pembezalayan Linear Fisher (FLDA); pengecaman pola balistik; hingar 

dedenyut bernilai tetap; pengkomputeran statistik; Matlamat Pembangunan Mampan 

Pertubuhan Bangsa-Bangsa Bersatu (SDG) 

 

1. Introduction 

In law enforcement, compelling evidence is crucial, particularly in firearm-related cases. 

Recovered fired bullets and cartridge cases provide valuable insights into firearm characteristics 

such as type, caliber, model, and potential links to past criminal activities. Ballistic experts 

primarily analyze rifling impressions on bullets and distinctive impressions on cartridge cases, 

including breech faces, ejectors, and firing pin impressions (Figure 1). While rifling 

impressions may be distorted upon impact, ejector and breech face impressions lack consistency. 

Experts and literature (Ghani et al. 2010; Chuan et al. 2013a, b; Chuan 2014; Chuan et al. 2017; 

Chuan et al. 2023) identify firing pin impressions as the most reliable feature for ballistic 

identification. 
 

 

Figure 1: Distinctive impressions on fired cartridge cases 

 

The origins of forensic ballistics identification trace back to Philip Gravelle, who pioneered 

the utilization of a low-contrast optical comparison microscope in forensic laboratories. The 

method was later applied by Calvin Goddard and Charles Waite during the investigation of the 

Saint Valentine’s Day massacre in 1929 (Nichols 1997; Heard 2008). Despite its historical 
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significance, optical comparison remained subjective, frequently leading to potential errors, 

prolonged investigation times, and reliance on expert interpretation.  

With advancements in technology, various automated ballistics identification systems have 

emerged for forensic applications. Commercial imaging systems such as the Integrated 

Ballistics Identification System (IBIS), Advanced Ballistics Analysis System (ALIAS), 

EVOFINDER Automated Ballistic Identification System, and CONDOR Ballistic 

Identification System have significantly reduced investigation times from weeks to hours by 

generating a ranked list of potential matches. However, these systems have inherent limitations, 

including illumination inconsistencies, reflection artifacts, and the need for expert validation. 

Consequently, the development of feature-based ballistic identification algorithms has gained 

traction in forensic research.  

Existing studies have explored the effectiveness of these algorithms under controlled 

conditions; however, limited research has assessed their performance in noisy imaging 

environments. Chuan et al. (2017) previously evaluated the robustness of their Fisher Linear 

Discriminant Analysis (FLDA)-based ballistic identification algorithm under random-value 

impulse noise. Nevertheless, fixed-value impulse noise, which can result from signal errors 

during image acquisition, remains an overlooked challenge. To address this gap, this study 

systematically evaluates the performance of an FLDA-based ballistics identification algorithm 

against simulated fixed-value impulse noise, including pepper, salt, and salt-and-pepper noise. 

The primary motivation for selecting the FLDA-based ballistic identification algorithm lies 

in its demonstrated computational efficiency, identification accuracy, and robustness under 

noise-free scenarios, making it a suitable candidate for further evaluation in noisy environments. 

Unlike conventional machine learning and deep learning algorithms that typically depend on 

hold-out or cross-validation techniques, this study introduces a novel statistical evaluation 

framework specifically designed to address overfitting and underfitting risks associated with 

limited datasets. Deep learning algorithms, particularly Convolutional Neural Network-based 

(CNN-based) architectures, including both single-stage and two-stage architectures, generally 

require large and diverse training datasets to generalize effectively. In contrast, the dataset 

utilized in this study is not merely limited in size but also highly sensitive to variations in 

lighting, background, and object orientation. Moreover, CNN-based architectures tend to be 

less effective for analyzing small regions of interest (ROI) such as the minute firing pin 

impression examined in this study, which occupies a tiny portion of a 9mm cartridge case.  

Although CNN-based architectures are frequently praised for real-time processing 

capabilities, such performance is not essential in forensic ballistic identification. Additionally, 

CNN-based architectures impose considerable complexities in terms of architecture design and 

optimization that require careful tuning of architectural parameters such as the number of layers, 

neurons, epochs, and other hyperparameters. In contrast, the FLDA algorithm offers a more 

interpretable and computationally efficient alternative under the practical constraints of forensic 

casework. These factors collectively support the appropriateness of employing a conventional 

algorithm such as FLDA over more complex CNN-based architectures in this context. 

The key contributions of this study include proposing a method to simulate fixed-value 

impulse noise for ballistic images, introducing a novel statistical evaluation approach 

specifically designed for limited sample forensic datasets, and assessing the robustness of the 

FLDA-based ballistic identification algorithm under various noise conditions. To facilitate a 

comprehensive analysis, the remainder of this article is structured as follows: Section 2 reviews 

related work, Section 3 presents the pseudo-code for simulating noisy images utilizing R 

statistical software, Section 4 outlines the research methodology, including denoising 

techniques and the Cross Industry Standard Process for Data Mining (CRISP-DM) framework, 
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Section 5 presents the analysis results and discussion, and Section 6 concludes the study with 

final remarks. 

2. Related Works 

In response to the limitations of commercial ballistics identification systems highlighted in 

earlier studies, researchers have increasingly developed semi-automated and fully automated 

feature-based ballistic identification algorithms to support forensic firearm examination. These 

approaches incorporate advanced image processing techniques, statistical feature extraction, 

and machine learning or deep learning algorithms to enhance the accuracy, objectivity, and 

operational efficiency of ballistics identification. Early efforts include the work of Xin et al. 

(2000), who introduced an automatic ballistic identification algorithm that extracted image 

features from breech face, extractor, and center-firing pin impressions. Their method 

incorporated texture-based features and geometric properties, such as the firing pin radius (r), 

and the deviation distance of the anchor point (A). Although the identification rate exceeded 

90%, the approach suffered from high computational costs due to reliance on the Circles Hough 

transform (CHT). To address this, Zhou et al. (2001) proposed a more advanced ballistic 

identification algorithm integrating local orientation analysis with an active snake model to 

enhance feature extraction. Nevertheless, their algorithm remained dependent on CHT and thus 

continued to face similar computational limitations. 

Thumwarin (2008) explored moment invariants (MI) extracted from primer rotation, 

incorporating Fourier coefficients for feature computation. While the proposed ballistic 

identification algorithm achieved promising identification accuracy, it faced challenges related 

to primer segmentation and the robustness of moment features under translation and scaling. 

Subsequently, Leng and Huang (2012) introduced an improved automatic ballistic 

identification algorithm based on translation, rotation, and scale (TRS) invariant moment 

features. Their framework employed image pre-processing techniques such as power-law 

transformation, Otsu’s thresholding, and Sobel sharpening. However, computational cost 

remained a concern, as features were extracted from the entire cartridge case rather than 

localized impressions. 

Building on global efforts, researchers in Malaysia have made significant contributions to 

feature-based ballistic identification algorithms. Ghani et al. (2009a, 2009b; 2010; 2018) 

pioneered early ballistic identification algorithms utilizing statistical moments features and 

TRS-non-invariant geometric moments. Their research evolved from simple summary statistics 

of center-firing pin impressions to the extraction of geometric moment non-invariants, 

highlighting the trajectory of local forensic approaches. Liong et al. (2012) extended this line 

of work by applying Principal Component Analysis (PCA) to reduce feature dimensionality 

from 68 extracted features, and employed FLDA (Fisher 1936) as the identification algorithm, 

reporting improved identification performance.  

In parallel, Kamaruddin et al. (2012) introduced a neural network-based ballistics 

identification algorithm by replacing the FLDA algorithm with a two-layer feed-forward 

backpropagation neural network (FBPNN) algorithm utilizing a tansig-tansig activation 

function. Ghani et al. (2018) later refined Kamaruddin et al.’s (2012) ballistic identification 

algorithm by incorporating a tansig-purelin configuration, improving feature learning. Despite 

these advances, the proposed algorithm required manual interpretation of center-firing pin 

impression locations and lacked TRS-invariant properties. To address these limitations, Chuan 

et al. (2013a, 2013b) and Chuan (2014) developed an enhanced automated feature-based 

ballistic identification algorithm utilizing Orthogonal Legendre Moment Invariants (OLMIs) 

within an FLDA-based ballistic identification framework. Their work prioritized translation 
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and scale invariants while rejecting Zernike Moment Invariants (ZMIs) due to computational 

complexity and unit disk constraints.  

Chuan et al. (2017) further validated the FLDA-based ballistic identification algorithm by 

simulating impulse noise up to 70% and achieving over 90% identification accuracy utilizing 

median filtering. In contrast, Razak et al. (2017) applied Canny edge detection with CHT and 

achieved 93% identification accuracy, although Chuan (2014) demonstrated that Laplacian 

kernels outperformed Canny (1986) and other sharpening techniques such as Sobel, and Marr 

and Hildreth (1980) filters in feature enhancement. More recently, Liong et al. (2020) proposed 

a mobile-based ballistic identification system achieving 98% identification accuracy utilizing 

an FBPNN with a sigmoid-linear activation function. However, the approach lacked practical 

validation in segmentation and did not incorporate TRS-invariant features.  

A comparative study by Chuan et al. (2023) evaluated five types of two-dimensional 

moment invariants for ballistic identification, including OLMIs, Hu Moment Invariants (HMIs), 

Tsirikolias-Mertzois Moment Invariants (TMMIs), Pan-Keane Moment Invariants (PKMIs), 

and Central Geometric Moments (CGMs), utilizing FLDA as the identification algorithm. 

Although CGMs achieved the highest identification accuracy for weakly associated feature sets, 

they lacked TRS invariants, confirming earlier limitations reported by Leng and Huang (2012). 

This limitation is particularly relevant to the dataset utilized in the present study, which is highly 

sensitive to variations in lighting, background, and object orientation.   

Despite these advancements, the potential impact of fixed-value impulse noise, such as salt, 

pepper, and salt-and-pepper noise introduced during ballistic image acquisition, remains 

underexplored in existing literature. To address this gap, the present study re-evaluates the 

robustness of the FLDA-based ballistics identification algorithm under simulated noise 

conditions. This investigation fills a critical void by assessing the algorithm’s performance 

under real-world signal degradation scenarios, thereby supporting its applicability in forensic 

environments. Although ANN-based architectures, particularly CNN-based architectures, have 

recently gained attention in ballistic identification, they remain impractical in forensic settings. 

Their effectiveness is frequently constrained by limited dataset sizes and high sensitivity to 

variations in lighting, background complexity, and object orientation. Moreover, CNN-based 

architectures are typically less effective when applied to small objects, such as in pistol 

detection tasks (Li et al. 2021; Sood et al. 2021). This is especially relevant to the firing pin 

impression examined in this study, which appears as a minute cavity on a cartridge case with 

an overall diameter of merely 9mm. Given these challenges, conventional algorithms such as 

FLDA offer a more practical and interpretable solution, particularly under the constrained and 

variable conditions typically found in forensic applications.  

3. Simulated Noisy Image 

In digital signal processing, noisy images refer to undesired errors that degrade the quality of 

digital images. These signal errors may occur during digitization and image formation, falling 

into four primary categories: additive noise, multiplicative noise, impulse noise, and 

quantization noise. However, this study specifically focuses on impulse noise due to its primary 

objective of evaluating the robustness of the FLDA-based ballistic identification algorithm 

utilizing simulated fixed-value impulse noisy images, including unipolar and bipolar noisy 

images. 

Impulse noise, such as pepper, salt, and salt-and-pepper noise, arises from transmission 

errors, sensor malfunctions, memory damage, and timing errors during analog-digital 

conversion (Chuan 2014; Chuan et al. 2017; Alanazi et al. 2023; Toktas et al. 2023). Pepper 

and salt noises are classified as unipolar, with pixel values of 0 and 1, respectively, 
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contaminating gray-scale images when compressed from the original intensity range of 0–255 

to 0–1. In contrast, salt-and-pepper noise is a bipolar mixture of salt and pepper noises, 

representing a typical form of impulse noise affecting images in this study. 

Mathematically, suppose that ( ) 2,I g x y


=     represents a digital image, and 

( ) 2c c ,I g x y


=     represents an image I  contaminated with 100%   where 

 c
1

, 0,1, 2, , 255
255

g g    and ( ) ( ), 0,1, 2, , 1, 1 .x y  = − −  The pixel intensity, 

( )c ,g x y  of an image cI  can be expressed as Eq. (1). 

 

( ) ( ) ( ) ( )( ) ( ) ( )( )c , , min , max ,g x y g x y u b g x y b u d g x y   = +   +                     (1) 

 

where u  is a uniform random variable, ( )0,1 .u  When 0,d =  the image cI  is contaminated 

with pepper noise, while for 0,b =  it is affected by salt noise. If ,b d=  the image experiences 

salt-and-pepper noise. To simulate noisy images, the study implements pseudo-code in R 

statistical software for the generation of pepper (Figure 2), salt (Figure 3), and salt-and-pepper 

(Figure 4) noise at various contamination levels. 

 
Function PerturbImage(P, theta) 

   #Get dimensions of the input matrix P 

   numRows <- nrow(P) 

   numCols <- ncol(P) 

   #Calculate the number of elements to perturb based on theta percentage 

   numElementsToPerturb <- round(theta * numRows * numCols / 100) 

   #Randomly select coordinates to perturb 

   selectedRows <- sample(1:numRows, numElementsToPerturb, replace=True) 

   selectedCols <- sample(1:numCols, numElementsToPerturb, replace=True) 

   #Combine selected coordinates to avoid duplicates 

   uniqueCoordinates <- unique(cbind(selectedRows, selectedCols))[1:numElementsToPerturb,] 

   #Create an empty numeric vector to store perturbation values 

   perturbationValues <- numeric(numElementsToPerturb) 

   #Apply perturbation to the input matrix P 

   P[cbind(uniqueCoordinates[, 1], uniqueCoordinates[, 2])] <- perturbationValues 

   #Return the perturbed matrix P 

   return(P) 

End Function 

Figure 2: Pseudo-code for simulating pepper noise 

 
 

Function PerturbImage(P, theta) 

   #Get dimensions of the input matrix P 

   numRows <- nrow(P) 

   numCols <- ncol(P) 

   #Calculate the number of elements to perturb based on theta percentage 

   numElementsToPerturb <- round(theta * numRows * numCols / 100) 

   #Randomly select coordinates to perturb 

   selectedRows <- sample(1:numRows, numElementsToPerturb, replace=True) 

   selectedCols <- sample(1:numCols, numElementsToPerturb, replace=True) 

   #Combine selected coordinates to avoid duplicates 

   uniqueCoordinates <- unique(cbind(selectedRows, selectedCols))[1:numElementsToPerturb,] 

   #Generate random values for perturbation 

   perturbationValues <- sample(1, numElementsToPerturb, replace=True) 

   #Apply perturbation to the input matrix P 

   P[cbind(uniqueCoordinates[, 1], uniqueCoordinates[, 2])] <- perturbationValues 

   #Return the perturbed matrix P 

   return(P) 

End Function 

Figure 3: Pseudo-code for simulating salt noise 
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Function PerturbImage(P, theta) 

   #Get dimensions of the input matrix P 

   numRows <- nrow(P) 

   numCols <- ncol(P) 

   #Calculate the number of elements to perturb based on theta percentage 

   numElementsToPerturb <- round(theta * numRows * numCols / 100)   

   #Randomly select coordinates to perturb 

   selectedRows <- sample(1:numRows, numElementsToPerturb, replace=True) 

   selectedCols <- sample(1:numCols, numElementsToPerturb, replace=True) 

   #Combine selected coordinates to avoid duplicates 

   uniqueCoordinates <- unique(cbind(selectedRows, selectedCols))[1:numElementsToPerturb,] 

   #Generate random binary value for perturbation 

   pertubationValues <- sample(0:1, numElementsToPerturb, replace=True) 

   #Apply perturbation to the input matrix P 

   P[cbind(uniqueCoordinates[,1], uniqueCoordinates[,2])]<-pertubationValues 

   #Return the perturbed matrix P 

   return(P) 

End Function 

Figure 4: Pseudo-code for simulating salt-and-pepper noise 

 

Figure 5: Simulated pepper noisy images contaminated with   variations 0.0, 0.2, 0.4, 0.6 =  and 0.8  

 
Figure 6: Simulated salt noisy images contaminated with   variations 0.0, 0.2, 0.4, 0.6 =  and 0.8  

 
Figure 7: Simulated salt-and-pepper noisy images contaminated with   variations 0.0, 0.2, 0.4, 0.6 =  and 0.8  

 

The simulated images corresponding to different noise intensities ( 0.0, 0.2, 0.4, 0.6, =  

and )0.8 (Figures 5–7) illustrate the contamination process. These illustrated noisy images 

contaminated by pepper, salt, and salt-and-pepper noise at 0.0, 0.2, 0.4, 0.6, =  and 0.8,  

respectively. This study emphasizes the significance of the Signal-to-Noise Ratio (SNR) for 

assessing noisy image levels. However, it takes a different approach by not utilizing SNR to 

simulate noise levels on images. Instead, this study utilizes contamination percentages, offering 

distinct advantages. This approach allows for easy simulation of noise based on investigated 

levels and facilitates the identification of noise levels in images when unknown. This is 

particularly beneficial as varying spatial kernels may be necessary for effectively removing 

contaminated noise levels in noisy images. 
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4. Theoretical Background of the Proposed Algorithm 

This study adopts the CRISP-DM framework, a widely recognized methodology applied in 

various disciplines, including education (Liang et al. 2024; Okoye et al. 2024), medical research 

(Mirza et al. 2023), and social sciences (Yunus & Loo 2024). Comprising six phases, including 

business understanding, data understanding, data preparation, modeling, evaluation, and 

deployment. This data science framework ensures a structured and systematic approach. The 

following sections describe its application in this study. 

4.1. Business understanding 

The primary objective of this study is to evaluate the robustness of the FLDA-based ballistic 

identification algorithm when applied to unipolar and bipolar fixed-value impulse noise 

conditions. Specifically, this study aims to determine the optimal spatial kernel type and size 

for denoising, ensuring that identification rates exceed 90% across all noise levels. Additionally, 

the statistical significance of the identification rate differences between noisy and non-noisy 

images is examined. To ensure reliable performance evaluation, ten random seeds were selected 

within the range of 1 to 9999, each representing a distinct scenario. 

The dataset consists of 747 non-noisy images, acquired utilizing the commercialized 

ballistics identification system (CONDOR) at the Royal Malaysia Police (RMP) forensics 

laboratory in Cheras, Kuala Lumpur, Malaysia. Due to daily acquisition restrictions, obtaining 

non-noisy images posed challenges, necessitating standardized illumination conditions to 

maintain image consistency. This study also addresses financial constraints in software 

selection. While Matrix Laboratory (MATLAB) is widely utilized for image processing and 

pattern recognition, its high cost led to the adoption of R statistical software as a cost-effective 

alternative. This decision not merely validates the FLDA-based ballistic identification 

algorithm but also reduces execution time and expenses associated with ballistic identification 

tasks. Figure 8 provides a schematic representation of the FLDA-based ballistic identification 

algorithm, with subsequent sections detailing each phase. 

 

 

Figure 8: Schematic representation of the FLDA-based ballistic identification algorithm 

4.2. Data understanding 

The data understanding phase establishes a foundational basis for subsequent data preparation. 

In this study, a dataset of 747 non-noisy images was collected from five semi-automatic 

Parabellum Vektor SP1 9mm pistols, labeled as Pistol A, Pistol B, Pistol C, Pistol D, and Pistol 

E. These models were selected based on guidance from the RMP, ensuring consistency in age, 

caliber, and structure design. This selection was particularly crucial as the center-firing pin 

impressions on cartridge cases from these models are difficult to distinguish without specialized 

tools. These pistols were selected due to their frequent utilization in criminal activities in 

Malaysia. 
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Initially, 150 cartridge cases were collected for each pistol. However, a preliminary 

screening identified three cartridges with one from Pistol D and two from Pistol E that exhibited 

center-firing pin impressions inconsistent with the rest of the dataset. Upon verification by the 

RMP, these were classified as outliers and excluded from this study. The remaining 747 center-

firing pin impression images were captured utilizing the CONDOR system and stored in Joint 

Photographic Experts Group (JPEG) format, each with a resolution of 389 pixels 389 pixels 

for further analysis. Subsequently, 50 center-firing pin impression images were randomly 

selected for each pistol utilizing the simple random sampling method applied in this study. 

4.3. Data preparation 

Data preparation involves a series of essential steps, including data selection, cleaning, 

formatting, and integration. This study focuses exclusively on the center-firing pin impressions 

of fired cartridge cases, as this feature has been shown to be structurally resilient and resistant 

to deformation compared to other surfaces. Its durability makes it an ideal candidate for ballistic 

identification (Ghani et al. 2010; Chuan et al. 2013a). This study deliberately excluded rim-

firing pin impression, given that pistols utilizing rim-firing mechanisms lack the capability to 

inflict fatal injuries. As a result, they are rarely utilized in serious criminal activities. By 

concentrating on center-firing pin impressions, this study ensures the forensic relevance of the 

dataset. All images were acquired in a controlled environment utilizing the CONDOR system, 

maintaining consistency in lighting and positioning to facilitate accurate identification. 

4.3.1. Denoising noisy images 

To evaluate the robustness of the denoising process, artificial noise, such as pepper, salt, and 

salt-and-pepper, was introduced into the dataset at varying levels 100%.   Initial 

identification tests revealed a significant reduction in identification accuracy when denoising 

was not applied. Consequently, a spatial kernel-based denoising approach was implemented 

before feature extraction, following the FLDA-based ballistic identification algorithm. The 

denoising kernel was selected based on the physical characteristics of the center-firing pin 

impressions. Table 1 summarizes the statistical spatial kernels utilized for denoising, each 

tailored to a specific noise type. The contraharmonic mean, minimum, first quartile (Q1), 

median, third quartile (Q3), and maximum filters were applied based on their effectiveness in 

removing different types of noise. 

 
Table 1: Denoising spatial kernels for a noisy image 

Noise 
Denoising spatial kernel 

Contraharmonic Mean Minimum Q1 Median Q3 Maximum 

Pepper Yes Yes Yes Yes No No 

Salt Yes No No Yes Yes Yes 

Salt-and-pepper No No No Yes No No 

 

Suppose that ( ) 2c ,K
h

g x y=     represents the denoising spatial kernel with a size of 

( )
22 2 1h = +  as expressed in Eq. (2). 

 


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( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( )

c c c

c c c

c c c

, 0, ,

, 0 0, 0 , 0

, 0, ,

K

g x y g x y g x y

g x y g x y g x y

g x y g x y g x y

    

 

    

 − + + + + + 
 
 
 = − + + + + +
 
 
 − − + − + − 











                 (2) 

 

where ( )c 0, 0g x y+ +  is the response value for c ,g  and 1, 2, 3, , 7. =  The kernel K  was 

applied to the noisy image cI  utilizing convolution, producing the denoised image ˆ.I  

Mathematically, this transformation is expressed as ( )
( )

2
2

ˆ ˆ , ,I g x y
 −

=    where 

( ) ( ), 0,1, 2, , , ,x y    = − −  and the denoised intensity value,  
1

ˆ 0,1, 2, , 255
255

g   is 

scaled within the range  0, 255 .  In particular, the pixel intensity ( )ˆ 0, 0g x y+ +  is estimated 

utilizing contraharmonic mean, quartile-based filters, and maximum filtering, as formulated in 

Eqs. (3)-(4). 

 

( )

( )

( )

0 0

0 0

1
0 0

0 0

,

ˆ ,

,

i j

i j

g x i y j

g x y

g x i y j

 


 

 


 

+

=− =−

=− =−

 − − 

=

 − − 

 

 




                                                                    (3) 

( ) ( )( )ˆ 0, 0 vecg x y P+ + = K                                                                                            (4) 

                                                                                                                         

where P  represents the percentile-based denoising function. This approach effectively 

restores image clarity while preserving critical structural details, ensuring reliable feature 

extraction for ballistic identification.  

4.3.2. Image pre-processing and feature engineering 

Building upon the methodologies outlined in Section 4.3.1, this study further refines the 

extracted image dataset by implementing a series of image processing and feature engineering 

techniques. Specifically, the enhancement, segmentation, and extraction of relevant image 

characteristics were crucial to ensuring robust feature representation for subsequent analysis. 

To achieve this, a sequence of image processing operators was applied, including the Laplacian 

sharpening spatial kernel, the Otsu threshold method, and the Moura and Kitney (1991) least-

square circle fitting algorithm. These techniques were systematically employed to highlight and 

quantify the physical attributes of the center-firing pin impression. Following the enhancement 

phase, noisy images were subjected to a denoising process utilizing appropriate denoising 

spatial kernels. Subsequently, the ROI segmentation was performed, followed by feature 

engineering, which involved feature creation, extraction, and selection. The feature selection 

phase utilized stepwise selection techniques and correlation analysis to retain the most 

informative attributes. The chronological procedure for image processing, denoising, 

segmentation, and feature engineering is outlined as follows: 
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Step 1: Input the image cI  into R statistical software. 

Step 2: Enhance image edges utilizing the Laplacian sharpening spatial kernel 

  resulting in an enhanced  image, ( )
( )

2CLSK CLSK 2 2
, ,I g x y

 − −
=     where

  ( )CLSK ,g x y  is computed based on Eq. (5). 

 

( ) ( ) ( )CLSK CLSK CLSK, 255vec ' vecK Kg x y =                                 (5) 

 

where CLSK

0 1 0

1 4 1

0 1 0

K

 
 

= −
 
  

 represents the Laplacian kernel coefficient. 

Step 3: Normalize the image intensity, ( )CLSK ,g x y  utilizing Eq. (6) to ensure that 

  ( )  CN , 0,1g x y   is compressed within the range  0,1 .  

 

( )
( ) ( )( )

( )( ) ( )( )
CLSK

CLSKCLSK

CLSK CLSK
,

CN
CLSK CLSK

,,

, min ,
1

, 255
255 max , min ,

I

II

x y

x yx y

g x y g x y

g x y
g x y g x y





 −
 

=  −
 
 

   (6) 

 

This results in the normalized image, ( )
( )

2CN CN 2 2
, .I g x y

 − −
=     

Step 4: Binarize the image CNI  utilizing the Otsu threshold method, producing a  

binary image, ( )
( )

2CB CB 2 2
,I g x y

 − −
=     with 

CN EB
CB

CN EB

1,
.

0,

     

     

g t
g

g t


= 






 

The threshold  EBt  is determined by minimizing within-class variance as  

expressed in Eq. (7). 

 

( )EB 255 255
1

arg min
255

t t t t
t

t    − −= +                                                 (7) 

 

where ( )CN

0

255 ,
t

t

i

i i 

=

=  ( )
255

255 CN

1

255 ,t

i t

i i −

= +

=   

( ) ( )
2

CN

0

2 2 log ,
t

t
t

i

H i
i


  

=

 
= − −  

 
   and 

( ) ( )
255

2 255
255 CN

1

2 2 log .t
t

i t

H i
i


   −

−

= +

 
= − −  

 
  

Step 5: Estimate the geometric properties (A and r) of the center-firing pin impressions  

(Figure 1-left) utilizing Moura and Kitney’s least square circle fitting algorithm, 

given as Eqs. (8)-(9) 
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( ) ( )

( ) ( )
( ) ( )
( ) ( )

1
2

20 00 10 11 10 01

2
11 10 01 02 00 01

30 12 10 20 02

03 21 01 20 02

2 2

A

2 2

      

     

     

     

     

−
 − −
 

=  
− −  

 + − +
 

+ − + 

                                  (8) 

( ) ( )( )

( )

CB

2 2
A A

,

2
2 2

Ix y

x x y y

r
H 



− + −

=
− −


                                                      (9) 

 

  where ( )
CB

CB

,

, ,

Ix y

g x y



=   and ( )
CB

CB

,

, .

I

p q
pq

x y

x y g x y



=   

Step 6: Denoise the images utilizing appropriate spatial kernels (Table 1), resulting in 
ˆ.I  

Step 7: Segmented the ROI, extracting ( ) ( )
2

D 1
2

ˆ ,ROI rg x y
−

=     based on the  

estimated A and r. 

Step 8: Extract features such as OLMI10, OLMI11, OLMI02, OLMI20, OLMI12, 

OLMI21, and OLMI22 from the ROI utilizing ( ) thu v+  order of the OLMI

 framework as expressed in Eq. (10). 

 

( )( )

0 0

2 1 2 1
OLMI ψ ψ

4

u v

uv ua vb ab

a b

u v
m

= =

+ +
=                                        (10) 

 

where ( )
1 1

2 2

0 0

2 2
ˆ1 1 ,

2 2

u vr r

ab

x y

x y
m g x y

r r

− −

= =

   
   = − −
   
   

   represents the geometric 

moments, and, ψ ,ua  ψvb  are Legendre polynomial coefficients defined in

 Eq. (11). 

 

( )
( )

( )
( )

( )

21 !
,       even

2 ! ! !
2 2

ψ

                                0,       odds

u a

u

ua

u a
u a

u a u a
a

u a

−
− +

− − +   
    
    

= 

 −




                                       (11) 
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This study selected the Laplacian sharpening spatial kernel due to its superior performance 

compared to Sobel, Canny, and Marr-Hildreth in a similar environment. Notably, variations in 

Laplacian kernel coefficients did not affect the identification accuracy rate in controlled 

conditions. For binarization, the Otsu threshold method outperformed entropy-based methods 

such as cross-entropy, Shannon entropy, and Tsallis entropy (Chuan et al. 2013b; Chuan 2014).  

Since the modified Otsu threshold method yielded similar identification accuracy, it was not 

selected for processing noisy images (Chuan 2014). 

In segmentation, Moura and Kitney’s algorithm was preferred over Albano’s (1974) conic 

arcs fitting algorithm, which performed worse. The CHT was avoided due to its high 

computational cost. This study also compared square-window and circular-window ROIs, 

selecting the square-window ROI at ( )
2

2
r  and ( )

2

4
r  as literature supports utilizing ( )

2

2
r  

(Ghani et al. 2010). The square-window ROI offered advantages in computational cost, 

execution time, pixel intensity distribution, and identification accuracy (Chuan et al. 2013b, 

2017; Chuan 2014; Liong et al. 2020). In contrast, the circular-window ROI, due to square 

pixel shapes, did not accurately capture circular structures and frequently had lower 

identification accuracy. 

4.4. Modeling 

The primary objective of the modeling phase in this study is to identify pistol types based on 

the selected feature set, with OLMIs being selected due to their invariant properties concerning 

TRS. Given that the response variable is categorical with five classes, this study employs the 

FLDA algorithm. which has been widely validated in ballistics forensics literature (Ghani et al. 

2010; Chuan et al. 2013a, b, 2023; Chuan 2014; Liong et al. 2020). Although ANN-based 

architectures, including CNNs, have gained popularity and demonstrated strong performance 

in various studies, they were not adopted in this study. This is primarily due to their limited 

interpretability stemming from the complexity of network design involving multiple hidden 

layers, numerous nodes, and various activation functions, as well as their high computational 

demands and extended execution time.  

Let N be the total number of images collected from F pistols, expressed as 

1

,
F

f

f

N N

=

=  

with each image represented by a 7-dimensional feature vector z extracted from the ROI. The 

feature vector extracted from the pistol f is denoted as zfg, where 1, 2, 3, , .fg N=   The 

identification process is performed by discriminating the image into pistol f utilizing the 

minimum Mahalanobis distance between the selected OLMI features vector z and the class 

centroid ,Z f  formulated as Eq. (12). 

 

( )( )
2

'

1

arg min e z Z

H

f h f
f

h

R

=

 
 = −
 
 
                                                                               (12) 

 

where eh  represents the H  eigenvectors of 
1

W B
−

 with ( )min ,7 .h H  The matrices W  and 

B  denote the within-classes and between-classes variance-covariance matrices, respectively. 

Mathematically, ,W ,B ,Z f  and Z  denote as Eqs. (13)-(16), respectively.  
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( )( )
1 1

'W z Z z Z
fNF

fg f fg f

f g= =

= − −                                                                            (13) 

( )( )
1

'B Z Z Z Z

F

f f

f =

= − −                                                                                         (14) 

1

1
Z z

fN

f fg
f g

N
=

=                                                                                                           (15) 

1 1

1

z

Z

fNF

fg

f g

F

f

f

N

= =

=

=





                                                                                                            (16) 

4.5. Evaluation and deployment 

The principal objective of the evaluation phase was to assess the effectiveness and robustness 

of the FLDA-based ballistic identification algorithm. To achieve this, an FLDA algorithm was 

implemented utilizing the Statistical Package for Social Sciences (SPSS), where identification 

accuracy rates were computed based on the true identification rates derived from confusion 

matrices. Since this study focused on five classes of pistols, the identification accuracy rates 

were averaged across these classes to provide a comprehensive assessment. Additionally, the 

stability of the FLDA-based ballistic identification algorithm was examined by employing ten 

distinct random seeds, each assumed to represent a unique set of noisy image scenarios. To 

determine whether the identification accuracy remained statistically significant under different 

noise levels, the Wilcoxon signed-rank test was conducted.  

In defining robustness, this study established a criterion requiring the average identification 

accuracy rates across ten simulated scenarios to exceed 90%. Furthermore, the presence of 

statistically significant differences between identification accuracy rates with and without 

utilizing a denoising spatial kernel was considered indicative of the algorithm’s robustness. 

This novel evaluation approach not merely assessed the algorithm’s generalization performance 

but also provided insights into its stability across diverse noisy scenarios. However, specificity, 

sensitivity, and F1 scores were not considered due to the inherent difficulty in establishing 

thresholds for decision-making based on these measurements. 

The potential superiority and authentication of the FLDA-based ballistic identification 

algorithm in the evaluation phase could enable its development as a mobile application. The 

utilization of a smartphone camera sensor, while less sophisticated than a dedicated ballistic 

identification system, may introduce noise during image acquisition, potentially degrading 

image quality. However, the development of the mobile application was not pursued at this 

stage, as further authentication within a forensic ballistics laboratory was deemed necessary. 

Instead, this study has been deployed as a research article to obtain constructive feedback from 

experts in the field, particularly those with strong mathematics and statistics backgrounds.  
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5. Analysis Results and Discussion 

This section presents the analysis results obtained utilizing three distinct software tools, as 

detailed in Section 4. These included the CONDOR ballistic identification system, utilized for 

acquiring and storing center-firing pin images, R statistical software, employed for data 

preparation, and SPSS, utilized for modeling. Notably, this study deviated from the CRISP-DM 

framework outlined in Section 4, particularly in the Business Understanding, Data 

Understanding, and Data Preparation phases, as these primarily involved pre-processing 

acquired images. Instead, the focus was placed on the modeling and evaluation phases.  

The following subsections present identification accuracy rates across different noise types, 

denoising spatial kernels, and segmentation square-window sizes, supported by statistical 

hypothesis testing. The ( )
2

2
r  square-window size serves as a benchmark, while the optimum 

segmented square-window size proposed by the FLDA-based ballistic identification algorithm 

is ( )
2

.
4

r  The study explored various square-window sizes, including ( )
2

,r  ( )
2

,
2

r  ( )
2

,
4

r   

( )
2

,
6

r  ( )
2

,
8

r  and ( )
2

.
10

r   

In addition, the analysis further highlights that ballistic identification accuracy is 

significantly affected by several OLMIs, particularly OLMI10, OLMI11, OLMI02, OLMI20, 

OLMI12, OLMI21, and OLMI22. These moments reflect essential statistical characteristics of the 

pixel intensity within the ROI. For instance, OLMI10 characterizes the center of mass of the 

pixel intensity along the x-axis, while OLMI11 captures the moment of inertia along the diagonal 

axis. OLMI02 and OLMI20 describe the moment of inertia along with y-axis and x-axis, 

respectively. OLMI12 and OLMI21 quantify the degree of asymmetry in the pixel intensity 

distribution along the y- and x-axes, and OLMI22 represents the tailedness or kurtosis-like 

behavior of the pixel intensity distribution across both axes. These interpretations provide a 

meaningful link between the extracted features and the visual characteristics of the firing pin 

impression, reinforcing the transparency of the algorithm. These interpretations underscore the 

clarity and interpretability of the FLDA-based ballistic identification algorithm, attributes that 

are frequently obscured in complex CNN-based architectures, particularly when applied to 

limited and noisy datasets such as those encountered in real-world forensic scenarios.  

5.1. Pepper noise 

The simulation results presented in Table 2 assess the robustness of the FLDA-based ballistic 

identification algorithm under pepper noise contamination, specifically when applying a 

median denoising spatial kernel. Notably, identification accuracy rates were unavailable in 

cases where mathematical constraints prevented feature extraction and identification, as 

indicated by the “-” symbol. This limitation arose in the contraharmonic mean denoising spatial 

kernel, where the zero denominators in Eq. (3) constructed normalization, OLMI feature 

extraction, and FLDA algorithm implementation. Similarly, the minimum-ranked ordered, 

median, and maximum-ranked ordered denoising spatial kernels resulted in zero-extracted 

OLMI values, making the FLDA algorithm infeasible. These findings highlight critical 

operational constraints in noise-affected environments, particularly for methods reliant on 

precise feature extraction. 

Despite these challenges, the FLDA-based ballistic identification algorithm demonstrated 

remarkable resilience against pepper noise, maintaining identification accuracy rates above 90% 

for 0.7   even without a denoising spatial kernel, provided the segmentation size of ROI was 
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( )
2

.
2

r  However, as the noise level increased to 0.9,   a smaller segmentation size of 

( )
2

4
r  proved more effective in preserving identification accuracy, likely by reducing noise 

interference at the pixel level and enhancing feature extraction fidelity. 

Interestingly, the findings suggest that denoising spatial kernels may not frequently be 

necessary for managing pepper noise, as the algorithm demonstrated intrinsic robustness under 

moderate noise conditions. However, for higher noise levels, selective denoising techniques 

further refined identification accuracy while balancing computation efficiency. Among these 

methods, this study concludes that the maximum-ranked order denoising spatial kernel with 

2, =  combined with an ROI size of ( )
2

,
4

r  is the most effective approach. This 

configuration not merely maintained high identification accuracy but also minimized 

computation cost and execution time, requiring the fewest resources compared to other 

denoising spatial kernels.  

These findings underscore the importance of strategic parameter selection in noise-affected 

ballistic identification, demonstrating that ROI segmentation and denoising kernel selection 

must be optimized simultaneously to achieve the best balance of accuracy, efficiency, and 

computational feasibility.  

Table 2: Enhancing identification accuracy: Impact of denoising spatial kernels and segmentation window         

size on pepper noise levels 

Kernel r    
Identification accuracy rates (%) at noise level of  (standard deviation (%))  

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 

Without kernel 2
r  - 

94.32 

(0.37) 

94.32 

(0.41) 

94.44 

(0.58) 

94.20 

(0.66) 

93.84 

(0.69) 

92.56 

(1.00) 

92.08 

(1.11) 

89.69 

(1.16) 

83.12 

(1.84) 

Contraharmonic Mean 
 

( )0.5l =  2
r  1 

94.84 

(0.23) 
- - - - - - - - 

  2 
94.92 

(0.19) 

94.96 

(0.21) 

95.12 

(0.17) 

95.08 

(0.27) 
- - - - - 

  3 
95.08 

(0.33) 

95.04 

(0.21) 

95.16 

(0.13) 

95.16 

(0.13) 

94.88 

(0.32) 

94.76 

(0.13) 
- - - 

  4 
95.20 

(0.19) 

95.20 

(0.00) 

95.08 

(0.19) 

95.12 

(0.17) 

94.84 

(0.40) 

94.56 

(0.39) 

94.52 

(0.27) 
- - 

  5 
95.16 

(0.23) 

95.20 

(0.00) 

95.20 

(0.19) 

95.16 

(0.13) 

94.68 

(0.19) 

94.88 

(0.32) 

94.64 

(0.34) 

94.80 

(0.38) 
- 

  6 
95.44 

(0.34) 

95.32 

(0.27) 

95.20 

(0.00) 

95.20 

(0.00) 

95.00 

(0.43) 

94.96 

(0.21) 

94.80 

(0.33) 

95.12 

(0.37) 
- 

  7 
95.56 

(0.40) 

95.52 

(0.32) 

95.36 

(0.21) 

95.24 

(0.13) 

95.12 

(0.53) 

95.08 

(0.19) 

95.00 

(0.21) 

94.88 

(0.45) 

95.08 

(0.53) 

Contraharmonic Mean 
 

( )1.0l =  2
r  1 

94.92 

(0.46) 
- - - - - - - - 

  2 
94.84 

(0.31) 

94.88 

(0.13) 

95.12 

(0.13) 

95.12 

(0.18) 
- - - - - 

  3 
94.96 

(0.43) 

95.04 

(0.21) 

95.16 

(0.13) 

95.12 

(0.17) 

94.76 

(0.35) 

94.92 

(0.19) 
- - - 

  4 
95.00 

(0.43) 

95.28 

(0.17) 

95.28 

(0.17) 

95.16 

(0.13) 

94.84 

(0.55) 

95.04 

(0.21) 

94.84 

(0.30) 
- - 

  5 
95.16 

(0.40) 

95.28 

(0.32) 

95.36 

(0.21) 

95.24 

(0.23) 

95.08 

(0.46) 

95.04 

(0.21) 

94.84 

(0.30) 

94.88 

(0.37) 
- 

  6 
95.16 

(0.35) 

95.52 

(0.17) 

95.40 

(0.21) 

95.40 

(0.28) 

95.44 

(0.21) 

95.08 

(0.27) 

95.20 

(0.27) 

94.88 

(0.41) 
- 

  7 
95.48 

(0.19) 

95.60 

(0.27) 

95.48 

(0.19) 

95.44 

(0.28) 

95.20 

(0.27) 

95.08 

(0.38) 

95.24 

(0.30) 

95.04 

(0.60) 

94.60 

(0.69) 

Contraharmonic Mean 
 

( )1.5l =  2
r  1 

95.12 

(0.25) 
- - - - - - - - 

  2 
94.80 

(0.33) 

94.88 

(0.17) 

95.12 

(0.17) 

95.12 

(0.17) 
- - - - - 

  3 
95.20 

(0.33) 

95.12 

(0.17) 

95.20 

(0.00) 

95.12 

(0.17) 

95.12 

(0.32) 

94.76 

(0.23) 
- - - 

  4 
94.88 

(0.25) 

95.24 

(0.13) 

95.36 

(0.28) 

95.24 

(0.30) 

95.12 

(0.45) 

94.92 

(0.19) 

94.68 

(0.38) 
- - 

            


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Table 2 (Continued)           

  5 
95.04 

(0.42) 

95.40 

(0.28) 

95.36 

(0.28) 

95.40 

(0.54) 

95.12 

(0.32) 

94.92 

(0.38) 

94.88 

(0.32) 

94.72 

(0.49) 
- 

  6 
95.36 

(0.39) 

95.32 

(0.27) 

95.28 

(0.32) 

95.24 

(0.30) 

95.24 

(0.48) 

94.72 

(0.41) 

94.68 

(0.46) 

94.92 

(0.38) 
- 

  7 
95.32 

(0.33) 

95.40 

(0.21) 

95.24 

(0.30) 

95.60 

(0.33) 

94.68 

(0.27) 

94.88 

(0.49) 

94.80 

(0.38) 

94.48 

(0.49) 

94.68 

(0.65) 

Median 2
r  1 

94.60 

(0.63) 

94.36 

(0.51) 

94.04 

(0.97) 

90.00 

(0.96) 

82.88 

(0.90) 

73.00 

(2.04) 

58.68 

(2.65) 

44.52 

(2.58) 

30.32 

(2.67) 

  2 
94.60 

(0.43) 

94.04 

(0.67) 

93.48 

(0.65) 

88.40 

(2.17) 

70.52 

(1.27) 

51.44 

(3.02) 

36.12 

(2.03) 

28.60 

(1.31) 
- 

  3 
94.40 

(0.65) 

93.24 

(0.44) 

93.40 

(0.51) 

88.52 

(1.27) 

59.44 

(2.49) 

38.68 

(3.86) 

29.08 

(2.13) 

21.96 

(0.74) 
- 

  4 
94.44 

(0.35) 

93.44 

(0.47) 

93.32 

(0.76) 

90.28 

(1.28) 

53.40 

(2.10) 

31.84 

(2.74) 

25.60 

(1.89) 
- - 

  5 
93.76 

(0.63) 

93.40 

(0.54) 

93.08 

(0.46) 

92.12 

(1.10) 

49.16 

(3.76) 

30.24 

(2.95) 

22.24 

(0.80) 
- - 

  6 
94.00 

(0.53) 

93.20 

(0.42) 

93.08 

(0.73) 

91.72 

(1.00) 

45.16 

(2.69) 

28.72 

(2.88) 
- - - 

  7 
93.88 

(0.42) 

93.16 

(0.44) 

93.12 

(0.67) 

92.32 

(0.88) 

43.24 

(2.19) 

26.48 

(2.94) 
- - - 

3
Q  

2
r  1 

94.72 

(0.45) 

94.92 

(0.19) 

94.88 

(0.41) 

94.60 

(0.34) 

93.92 

(1.06) 

91.96 

(1.21) 

85.92 

(1.10) 

72.96 

(2.67) 

51.96 

(2.40) 

  2 
94.88 

(0.42) 

94.80 

(0.28) 

95.00 

(0.45) 

94.80 

(0.37) 

94.32 

(0.85) 

92.76 

(1.09) 

80.04 

(1.34) 

56.04 

(3.60) 

34.12 

(3.20) 

  3 
95.04 

(0.54) 

95.00 

(0.21) 

94.84 

(0.40) 

95.12 

(0.59) 

94.24 

(0.63) 

92.68 

(0.78) 

76.76 

(2.15) 

44.16 

(2.68) 

25.20 

(1.79) 

  4 
95.00 

(0.47) 

94.96 

(0.28) 

94.96 

(0.28) 

95.28 

(0.37) 

94.24 

(0.63) 

93.08 

(0.68) 

76.48 

(2.86) 

37.88 

(3.33) 

25.24 

(1.75) 

  5 
95.32 

(0.50) 

95.00 

(0.43) 

94.88 

(0.32) 

94.64 

(0.51) 

93.92 

(0.59) 

93.12 

(0.56) 

75.84 

(2.30) 

34.24 

(2.87) 
- 

  6 
95.32 

(0.33) 

94.96 

(0.39) 

94.76 

(0.44) 

94.56 

(0.21) 

94.08 

(0.75) 

93.28 

(0.59) 

78.60 

(2.02) 

30.60 

(1.81) 
- 

  7 
95.20 

(0.53) 

94.80 

(0.42) 

94.72 

(0.53) 

94.40 

(0.42) 

93.72 

(0.73) 

92.88 

(0.86) 

80.00 

(1.53) 

30.36 

(2.49) 
- 

Maximum 2
r  1 

94.60 

(0.28) 

94.48 

(0.41) 

94.60 

(0.28) 

94.76 

(0.30) 

94.88 

(0.25) 

94.52 

(0.27) 

94.32 

(0.37) 

93.60 

(0.38) 

87.92 

(1.65) 

  2 
93.76 

(0.47) 

93.56 

(0.58) 

93.52 

(0.45) 

93.76 

(0.47) 

94.12 

(0.33) 

93.88 

(0.27) 

94.04 

(0.44) 

93.68 

(0.41) 

93.40 

(1.02) 

  3 
93.24 

(0.61) 

93.40 

(0.57) 

93.48 

(0.60) 

93.72 

(0.27) 

93.52 

(0.56) 

93.36 

(0.43) 

93.36 

(0.51) 

93.28 

(0.53) 

93.28 

(1.03) 

  4 
92.84 

(0.23) 

93.20 

(0.46) 

93.48 

(0.57) 

93.20 

(0.42) 

93.28 

(0.70) 

93.08 

(0.57) 

93.20 

(0.60) 

93.20 

(0.82) 

93.52 

(0.90) 

  5 
92.48 

(0.59) 

92.88 

(0.62) 

93.24 

(0.87) 

93.04 

(0.57) 

93.08 

(0.80) 

93.20 

(0.90) 

93.12 

(0.98) 

93.28 

(0.56) 

92.64 

(0.87) 

  6 
92.12 

(0.57) 

92.48 

(0.41) 

93.04 

(0.74) 

93.20 

(0.75) 

92.72 

(1.25) 

93.48 

(0.94) 

92.88 

(0.80) 

92.76 

(1.14) 

91.84 

(0.93) 

  7 
91.88 

(0.68) 

92.72 

(0.56) 

92.64 

(0.85) 

92.96 

(1.00) 

92.36 

(1.09) 

92.52 

(1.02) 

92.44 

(1.01) 

91.88 

(0.50) 

91.44 

(0.89) 

Without kernel 4
r  - 

94.16 

(0.54) 

94.40 

(0.63) 

93.88 

(0.46) 

94.32 

(0.56) 

93.92 

(0.65) 

93.88 

(0.80) 

93.68 

(0.67) 

92.80 

(1.32) 

90.88 

(1.33) 

Contraharmonic Mean 
 

( )0.5l =  4
r  1 

94.04 

(0.48) 
- - - - - - - - 

  2 
94.04 

(0.76) 

94.16 

(0.47) 

94.20 

(0.28) 

94.40 

(0.38) 
- - - - - 

  3 
94.56 

(0.39) 

94.88 

(0.41) 

94.32 

(0.32) 

94.32 

(0.32) 

94.64 

(0.34) 

94.92 

(0.19) 
- - - 

  4 
94.52 

(0.60) 

94.68 

(0.53) 

94.64 

(0.28) 

94.68 

(0.19) 

94.48 

(0.25) 

94.96 

(0.34) 

94.84 

(0.23) 
- - 

  5 
94.68 

(0.65) 

95.00 

(0.47) 

94.76 

(0.23) 

94.76 

(0.23) 

94.84 

(0.35) 

95.00 

(0.21) 

94.76 

(0.13) 

94.88 

(0.25) 
- 

  6 
94.96 

(0.34) 

94.96 

(0.51) 

94.64 

(0.43) 

94.76 

(0.40) 

94.96 

(0.39) 

95.12 

(0.25) 

94.88 

(0.17) 

94.76 

(0.48) 
- 

  7 
94.80 

(0.46) 

94.68 

(0.46) 

94.72 

(0.32) 

94.88 

(0.25) 

94.80 

(0.46) 

95.16 

(0.40) 

95.40 

(0.34) 

95.08 

(0.19) 

95.28 

(0.41) 

Contraharmonic Mean 
 

( )1.0l =  4
r  1 

94.00 

(0.63) 
- - - - - - - - 

  2 
94.56 

(0.51) 

94.48 

(0.32) 

94.24 

(0.28) 

94.28 

(0.42) 
- - - - - 

  3 
94.76 

(0.30) 

94.72 

(0.53) 

94.72 

(0.37) 

94.44 

(0.40) 

94.92 

(0.27) 

94.84 

(0.23) 
- - - 

  4 
94.80 

(0.33) 

94.64 

(0.34) 

94.76 

(0.35) 

94.72 

(0.25) 

94.88 

(0.25) 

94.84 

(0.23) 

94.96 

(0.21) 
- - 

  5 
94.76 

(0.40) 

94.92 

(0.38) 

94.84 

(0.35) 

94.84 

(0.35) 

94.80 

(0.42) 

94.84 

(0.23) 

94.84 

(0.24) 

94.96 

(0.34) 
- 

  6 
94.96 

(0.63) 

94.84 

(0.30) 

94.84 

(0.44) 

94.68 

(0.42) 

94.96 

(0.39) 

95.00 

(0.28) 

94.80 

(0.63) 

95.12 

(0.49) 
- 
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Table 2 (Continued)           

  7 
95.04 

(0.51) 

94.92 

(0.38) 

94.68 

(0.42) 

94.68 

(0.42) 

95.00 

(0.39) 

95.28 

(0.49) 

95.32 

(0.38) 

95.08 

(0.42) 

95.36 

(0.57) 

Contraharmonic Mean 
 

( )1.5l =  4
r  1 

94.40 

(0.46) 
- - - - - - - - 

  2 
94.44 

(0.55) 

94.68 

(0.19) 

94.60 

(0.47) 

94.56 

(0.28) 
- - - - - 

  3 
94.80 

(0.42) 

94.72 

(0.41) 

94.56 

(0.28) 

94.68 

(0.46) 

94.76 

(0.30) 

94.84 

(0.30) 
- - - 

  4 
94.92 

(0.33) 

94.92 

(0.50) 

94.92 

(0.33) 

94.92 

(0.27) 

95.04 

(0.51) 

95.12 

(0.17) 

95.08 

(0.27) 
- - 

  5 
94.72 

(0.37) 

94.96 

(0.39) 

94.64 

(0.34) 

94.88 

(0.32) 

95.12 

(0.45) 

95.04 

(0.43) 

94.88 

(0.41) 

95.00 

(0.47) 
- 

  6 
94.96 

(0.43) 

94.76 

(0.35) 

94.84 

(0.40) 

94.84 

(0.40) 

94.92 

(0.57) 

95.28 

(0.37) 

94.96 

(0.60) 

94.88 

(0.84) 
- 

  7 
95.00 

(0.39) 

95.00 

(0.28) 

94.96 

(0.28) 

95.08 

(0.33) 

95.24 

(0.35) 

95.48 

(0.33) 

95.40 

(0.74) 

95.08 

(0.84) 

95.60 

(0.60) 

Median 4
r  1 

93.84 

(0.43) 

94.24 

(0.74) 

94.04 

(0.72) 

92.96 

(1.04) 

92.04 

(1.63) 

86.96 

(2.13) 

72.12 

(2.00) 

50.44 

(2.91) 

31.68 

(2.48) 

  2 
93.76 

(0.76) 

94.12 

(0.33) 

94.32 

(0.59) 

93.04 

(1.21) 

85.24 

(1.95) 

62.36 

(2.30) 

37.92 

(1.36) 

26.88 

(1.66) 
- 

  3 
93.76 

(0.69) 

94.56 

(0.43) 

95.24 

(0.72) 

94.44 

(0.74) 

74.89 

(2.32) 

43.80 

(2.06) 

29.20 

(2.71) 
- - 

  4 
94.12 

(0.50) 

94.84 

(0.89) 

95.28 

(0.73) 

95.32 

(1.13) 

65.12 

(3.19) 

33.08 

(3.89) 

24.68 

(1.35) 
- - 

  5 
94.36 

(0.55) 

94.80 

(0.53) 

95.96 

(0.55) 

95.84 

(0.76) 

56.28 

(3.38) 

30.60 

(2.64) 
- - - 

  6 
94.48 

(0.49) 

95.96 

(0.67) 

96.44 

(0.55) 

96.56 

(0.95) 

52.58 

(3.46) 

27.52 

(2.39) 
- - - 

  7 
95.24 

(0.44) 

96.32 

(0.49) 

96.76 

(0.51) 

96.88 

(0.49) 

45.88 

(3.27) 

25.64 

(1.58) 
- - - 

3
Q  

4
r  1 

94.20 

(0.28) 

93.96 

(0.30) 

94.16 

(0.43) 

94.32 

(0.37) 

94.68 

(0.63) 

94.36 

(0.83) 

93.48 

(1.27) 

85.52 

(1.45) 

62.64 

(1.76) 

  2 
94.36 

(0.51) 

94.20 

(0.43) 

94.24 

(0.21) 

94.32 

(0.41) 

94.60 

(0.51) 

94.04 

(0.95) 

90.76 

(0.95) 

67.52 

(4.13) 

35.16 

(1.53) 

  3 
94.20 

(0.63) 

94.20 

(0.43) 

94.28 

(0.33) 

94.28 

(0.27) 

94.68 

(0.53) 

95.16 

(0.67) 

88.88 

(1.20) 

52.28 

(3.43) 

27.76 

(1.98) 

  4 
94.36 

(0.35) 

94.12 

(0.71) 

94.08 

(0.41) 

94.36 

(0.44) 

94.88 

(0.53) 

95.32 

(0.46) 

87.56 

(2.30) 

40.76 

(2.72) 

22.84 

(0.61) 

  5 
94.28 

(0.71) 

94.04 

(0.61) 

94.08 

(0.41) 

94.16 

(0.54) 

94.12 

(0.60) 

95.40 

(0.71) 

88.52 

(2.07) 

36.02 

(3.15) 
- 

  6 
93.52 

(0.43) 

93.72 

(0.46) 

94.00 

(0.42) 

94.24 

(0.51) 

95.12 

(0.62) 

95.80 

(0.83) 

89.64 

(1.42) 

31.10 

(3.15) 
- 

  7 
94.00 

(0.42) 

93.88 

(0.42) 

93.96 

(0.40) 

94.88 

(0.59) 

95.16 

(0.40) 

96.64 

(0.47) 

90.28 

(1.47) 

29.76 

(2.86) 
- 

Maximum 4
r  1 

94.52 

(0.60) 

94.24 

(0.47) 

94.24 

(0.34) 

94.16 

(0.28) 

94.20 

(0.34) 

94.08 

(0.37) 

94.08 

(0.67) 

94.44 

(0.51) 

93.48 

(0.76) 

  2 
95.28 

(0.77) 

94.88 

(0.32) 

94.76 

(0.55) 

95.16 

(0.55) 

95.00 

(0.34) 

94.72 

(0.75) 

94.76 

(0.40) 

94.60 

(0.34) 

94.56 

(0.57) 

  3 
95.24 

(0.58) 

95.36 

(0.43) 

95.40 

(0.28) 

95.20 

(0.38) 

95.68 

(0.37) 

95.52 

(0.49) 

94.80 

(0.65) 

94.96 

(0.66) 

94.80 

(0.60) 

  4 
95.32 

(0.33) 

95.32 

(0.42) 

94.84 

(0.51) 

95.40 

(0.43) 

95.40 

(0.54) 

95.24 

(0.64) 

95.32 

(0.68) 

95.12 

(0.41) 

94.64 

(0.69) 

  5 
94.48 

(0.49) 

94.76 

(0.35) 

94.72 

(0.70) 

94.88 

(0.59) 

95.48 

(0.42) 

95.48 

(0.50) 

95.40 

(0.83) 

95.36 

(0.80) 

95.08 

(0.53) 

  6 
94.80 

(0.73) 

94.76 

(0.44) 

95.44 

(0.60) 

95.72 

(0.53) 

95.24 

(0.61) 

95.24 

(0.51) 

95.60 

(0.63) 

96.04 

(0.67) 

95.84 

(0.69) 

  7 
95.04 

(0.54) 

95.56 

(0.64) 

95.72 

(0.33) 

96.04 

(0.44) 

95.72 

(0.53) 

95.64 

(0.69) 

96.12 

(0.73) 

95.72 

(0.82) 

95.88 

(1.12) 

*Note: The bold values indicate a statistically significant difference in identification accuracy rates between the algorithm with and without 

denoising spatial kernel 

5.2. Salt noise 

Table 3 presents the average identification rates and standard deviations across ten distinct 

simulated salt noise image scenarios, considering variations in denoising spatial kernels, 

segmentation window sizes, and kernel window sizes. The analysis reveals the FLDA-based 

ballistic identification algorithm achieves identification accuracy rates exceeding 90% at noise 

levels 0.2 =  and 0.4, = when utilizing segmentation square-window sizes of ( )
2

2
r  and 

( )
2

,
4

r  respectively, without the application of denoising spatial kernels. However, the results 
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indicate that the algorithms exhibit reduced robustness in the absence of denoising spatial 

kernels. Notably, the segmentation square-window size of ( )
2

4
r  outperforms ( )

2
,

2
r  which 

is consistent with findings reported in previous literature (Chuan et al. 2013b). 

At higher noise levels, particularly at 0.9, =  the application of appropriate denoising 

spatial kernels leads to substantial improvements in identification accuracy, especially when 

employing a segmentation square-window size of ( )
2

.
4

r  The analysis identifies several 

effective denoising spatial kernels, including the contraharmonic mean denoising spatial kernel 

with order 0.5l = −  for 6 =  and 7, as well as the contraharmonic mean denoising spatial 

kernel with order 1.0l = −  for 4, 5, 6 =  and 7. Furthermore, the contraharmonic mean 

denoising spatial kernel with order 1.5l = −  demonstrates strong performance for 3, 4, 5, 6, =  

and 7, while the minimum-ranked ordered denoising spatial kernel proves effective with for 

3, 4, 5, =  and 6. The findings presented in Table 3 further support these observations. 

From a computational perspective, the implementation of a denoising spatial kernel with a 

smaller window size is advantageous due to its reduced computational cost and shorter 

execution time compared to larger window sizes. Among the tested denoising approaches, the 

contraharmonic mean denoising spatial kernel with order 1.5l = −  and 3 =  emerges as 

particularly effective in mitigating salt noise. However, a more comprehensive evaluation 

reveals that the minimum-ranked ordered denoising spatial kernel consistently outperforms 

other methods, demonstrating superior identification accuracy, particularly at moderate noise 

levels where 0.5.   This suggests that the minimum-ranked ordered denoising spatial kernel 

provides the most robust and reliable denoising performance for salt noise conditions. 

Table 3: Enhancing identification accuracy: Impact of denoising spatial kernels and segmentation window         

size on salt noise levels 

Kernel r    
Identification accuracy rates (%) at noise level of  (standard deviation (%))  

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 

Without kernel 2
r  - 

93.12 

(1.06) 

92.64 

(2.01) 

89.84 

(1.43) 

86.20 

(1.75) 

83.24 

(1.68) 

80.48 

(1.61) 

74.24 

(1.92) 

67.16 

(1.69) 

54.56 

(3.58) 

Contraharmonic Mean  

( )0.5l = −  2
r  1 

94.40 

(0.78) 

93.91 

(0.71) 

93.60 

(0.65) 

93.64 

(0.91) 

91.04 

(1.18) 

89.48 

(1.37) 

86.36 

(2.15) 

80.00 

(2.56) 

69.32 

(2.49) 

  2 
94.32 

(0.56) 

93.88 

(0.82) 

93.32 

(1.18) 

93.48 

(0.76) 

91.64 

(1.15) 

90.64 

(1.04) 

87.12 

(1.47) 

82.40 

(1.12) 

70.76 

(2.06) 

  3 
94.40 

(0.46) 

94.20 

(0.34) 

93.76 

(0.54) 

93.24 

(0.74) 

92.40 

(2.01) 

90.84 

(0.81) 

88.40 

(1.48) 

82.68 

(2.52) 

70.12 

(1.79) 

  4 
94.52 

(0.63) 

94.16 

(0.60) 

93.32 

(0.92) 

93.64 

(0.74) 

91.96 

(1.58) 

91.00 

(0.93) 

88.16 

(2.22) 

82.08 

(1.86) 

71.68 

(2.56) 

  5 
94.24 

(0.51) 

94.40 

(0.90) 

93.84 

(1.25) 

93.52 

(1.51) 

92.12 

(1.54) 

90.04 

(1.17) 

88.96 

(1.96) 

83.00 

(2.67) 

72.60 

(3.11) 

  6 
94.48 

(0.73) 

93.96 

(0.74) 

93.20 

(0.88) 

93.20 

(0.63) 

92.08 

(1.17) 

90.80 

(1.77) 

87.52 

(1.56) 

83.00 

(1.28) 

72.40 

(2.53) 

  7 
94.12 

(0.57) 

94.12 

(0.71) 

93.96 

(0.74) 

93.28 

(0.82) 

91.72 

(1.28) 

90.40 

(1.47) 

87.92 

(1.48) 

83.60 

(2.61) 

73.60 

(1.88) 

Contraharmonic Mean 
 

( )1.0l = −  2
r  1 

94.36 

(0.55) 

94.56 

(0.39) 

93.96 

(0.64) 

93.84 

(0.57) 

93.00 

(0.98) 

92.12 

(1.27) 

91.20 

(1.98) 

86.84 

(1.37) 

77.44 

(2.51) 

  2 
94.32 

(0.41) 

94.28 

(0.71) 

94.00 

(0.80) 

94.20 

(0.60) 

93.52 

(1.20) 

93.24 

(0.64) 

92.32 

(1.33) 

88.52 

(1.39) 

80.12 

(1.71) 

  3 
93.80 

(0.57) 

94.00 

(0.38) 

93.96 

(0.89) 

94.00 

(0.75) 

93.84 

(0.76) 

92.72 

(0.80) 

91.60 

(1.19) 

89.84 

(1.48) 

80.80 

(3.02) 

  4 
93.84 

(0.66) 

94.04 

(0.35) 

94.12 

(0.76) 

94.00 

(0.63) 

93.72 

(1.07) 

93.08 

(1.15) 

92.32 

(1.80) 

89.36 

(1.15) 

81.88 

(1.71) 

  5 
93.72 

(0.68) 

93.68 

(0.45) 

94.24 

(0.85) 

94.20 

(0.47) 

92.96 

(0.43) 

92.88 

(1.05) 

91.72 

(1.27) 

89.88 

(1.25) 

80.24 

(2.13) 

  6 
93.60 

(0.53) 

93.64 

(0.64) 

93.60 

(0.53) 

93.72 

(0.68) 

92.88 

(0.98) 

92.48 

(0.88) 

91.48 

(0.80) 

89.44 

(0.47) 

81.08 

(1.00) 

  7 
93.68 

(0.56) 

93.80 

(0.74) 

93.64 

(0.48) 

93.72 

(0.53) 

93.48 

(0.84) 

93.24 

(1.04) 

91.12 

(1.22) 

89.64 

(1.97) 

82.48 

(2.78) 
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Table 3 (Continued)
 

          

Contraharmonic Mean 
 

( )1.5l = −  2
r  1 

94.32 

(0.25) 

94.08 

(0.25) 

94.04 

(0.58) 

94.44 

(0.55) 

94.52 

(0.80) 

94.00 

(0.63) 

92.36 

(0.72) 

88.72 

(1.79) 

82.20 

(3.54) 

  2 
93.72 

(0.38) 

93.88 

(0.53) 

93.88 

(0.42) 

94.12 

(0.42) 

93.72 

(0.96) 

93.72 

(0.73) 

92.72 

(0.77) 

91.84 

(1.43) 

85.44 

(1.99) 

  3 
93.20 

(0.42) 

93.84 

(0.47) 

93.80 

(0.60) 

93.96 

(0.55) 

94.12 

(0.53) 

93.92 

(0.73) 

93.44 

(0.78) 

92.44 

(1.01) 

93.56 

(3.53) 

  4 
93.36 

(0.28) 

93.24 

(0.30) 

93.52 

(0.37) 

93.76 

(0.34) 

93.88 

(0.76) 

93.52 

(0.80) 

92.80 

(0.96) 

92.24 

(1.09) 

86.96 

(2.75) 

  5 
93.36 

(0.28) 

93.48 

(0.33) 

93.56 

(0.58) 

93.76 

(0.69) 

93.40 

(0.63) 

93.36 

(1.00) 

93.16 

(0.72) 

92.52 

(0.87) 

86.40 

(1.46) 

  6 
93.44 

(0.43) 

93.56 

(0.55) 

93.64 

(0.40) 

93.48 

(0.65) 

93.36 

(0.95) 

93.32 

(0.50) 

92.80 

(0.63) 

92.08 

(1.16) 

87.20 

(1.57) 

  7 
93.32 

(0.42) 

93.24 

(0.40) 

93.28 

(0.53) 

93.24 

(0.55) 

93.48 

(0.73) 

92.92 

(0.60) 

91.40 

(1.20) 

92.76 

(1.51) 

86.56 

(1.52) 

Minimum 2
r  1 

93.08 

(0.38) 

93.00 

(0.28) 

93.36 

(0.34) 

93.04 

(0.34) 

93.40 

(0.57) 

92.48 

(0.94) 

90.84 

(1.29) 

82.68 

(2.55) 

63.88 

(3.67) 

  2 
92.96 

(0.43) 

92.84 

(0.48) 

92.92 

(0.42) 

92.92 

(0.73) 

92.88 

(0.41) 

92.68 

(0.68) 

92.72 

(0.59) 

91.64 

(0.76) 

78.32 

(1.94) 

  3 
91.96 

(0.51) 

91.72 

(0.63)  

91.80 

(0.57) 

92.52 

(0.60) 

92.36 

(0.61) 

92.88 

(0.82) 

92.28 

(0.65) 

92.24 

(1.21) 

89.80 

(1.28) 

  4 
88.60 

(0.78) 

89.04 

(0.76) 

89.04 

(1.15) 

89.60 

(0.84) 

89.96 

(0.89) 

90.12 

(1.08) 

90.84 

(1.02) 

90.64 

(0.71) 

91.20 

(1.25) 

  5 
86.68 

(0.76) 

86.92 

(0.50) 

87.52 

(0.80) 

87.72 

(0.76) 

87.60 

(0.68) 

89.16 

(1.34) 

89.20 

(1.40) 

89.16 

(1.01) 

89.92 

(1.89) 

  6 
86.68 

(0.76) 

86.36 

(1.15) 

86.08 

(1.14) 

86.60 

(1.12) 

86.20 

(1.30) 

86.28 

(1.18) 

86.44 

(1.47) 

86.88 

(1.22) 

88.64 

(1.36) 

  7 
86.68 

(0.76) 

85.24 

(1.04) 

84.84 

(1.17) 

85.04 

(1.34) 

85.44 

(1.21) 

85.20 

(0.57) 

84.72 

(1.45) 

85.32 

(1.28) 

88.60 

(1.24) 

1
Q  

2
r  1 

93.76 

(0.43) 

94.28 

(0.33) 

94.28 

(0.42) 

92.96 

(0.85) 

89.64 

(1.35) 

81.24 

(1.80) 

66.72 

(3.55) 

51.60 

(3.19) 

39.92 

(3.57) 

  2 
93.36 

(0.34) 

93.56 

(0.30) 

93.88 

(0.38) 

94.20 

(0.34) 

94.08 

(0.73) 

85.96 

(1.97) 

63.80 

(2.89) 

45.04 

(1.96) 

33.16 

(3.28) 

  3 
93.36 

(0.28) 

93.60 

(0.42) 

93.72 

(0.19) 

93.76 

(0.34) 

94.56 

(0.76) 

91.80 

(0.81) 

64.96 

(1.72) 

40.00 

(2.90) 

30.44 

(2.27) 

  4 
93.40 

(0.28) 

93.84 

(0.28) 

93.84 

(0.34) 

94.08 

(0.77) 

93.80 

(0.76) 

94.16 

(0.78) 

65.00 

(1.68) 

37.12 

(3.25) 

30.68 

(1.74) 

  5 
93.44 

(0.28) 

93.60 

(0.27) 

93.72 

(0.60) 

93.96 

(0.40) 

94.12 

(0.53) 

94.24 

(0.89) 

68.08 

(2.44) 

34.20 

(2.21) 

27.60 

(3.23) 

  6 
93.48 

(0.33) 

93.52 

(0.45) 

93.48 

(0.53) 

93.76 

(0.87) 

94.24 

(0.83) 

94.20 

(0.66) 

72.24 

(1.93) 

33.40 

(2.71) 

27.12 

(1.67) 

  7 
93.24 

(0.46) 

93.44 

(0.34) 

93.20 

(0.50) 

93.52 

(0.59) 

94.32 

(0.73) 

94.36 

(0.67) 

76.36 

(1.80) 

32.92 

(2.39) 

26.60 

(1.68) 

Median 2
r  1 

94.88 

(0.32) 

94.20 

(0.51) 

90.60 

(1.23) 

80.08 

(3.23) 

66.04 

(2.53) 

56.52 

(3.30) 

44.92 

(3.19) 

37.88 

(2.27) 

32.36 

(2.09) 

  2 
94.80 

(0.27) 

94.88 

(0.32) 

93.88 

(0.63) 

81.52 

(1.62) 

59.04 

(4.35) 

43.52 

(2.02) 

35.80 

(2.95) 

32.80 

(2.57) 

26.64 

(1.80) 

  3 
94.52 

(0.42) 

94.40 

(0.27) 

95.00 

(0.21) 

84.72 

(1.72) 

53.60 

(3.78) 

37.84 

(2.87) 

34.12 

(2.95) 

28.08 

(1.41) 

27.00 

(2.38) 

  4 
94.36 

(0.35) 

94.44 

(0.35) 

94.84 

(0.48) 

88.76 

(1.01) 

50.68 

(1.89) 

35.48 

(2.04) 

32.56 

(2.14) 

27.44 

(1.25) 

26.00 

(1.47) 

  5 
94.16 

(0.43) 

94.44 

(0.44) 

95.12 

(0.25) 

91.48 

(1.02) 

45.84 

(4.00) 

32.04 

(1.90) 

30.84 

(1.30) 

36.72 

(0.98) 

27.08 

(1.39) 

  6 
94.28 

(0.27) 

94.80 

(0.50) 

95.20 

(0.57) 

92.72 

(1.01) 

45.88 

(4.25) 

32.12 

(2.62) 

30.12 

(1.18) 

26.96 

(0.83) 

25.52 

(1.88) 

  7 
94.56 

(0.39) 

94.56 

(0.66) 

95.40 

(0.51) 

94.12 

(0.87) 

45.60 

(3.20) 

30.12 

(0.23) 

30.12 

(1.22) 

27.24 

(0.74) 

25.44 

(1.82) 

Without kernel 4
r  - 

94.28 

(0.53) 

94.20 

(0.63) 

94.20 

(0.76) 

94.08 

(1.10) 

93.32 

(0.78) 

92.08 

(1.58) 

90.00 

(1.26) 

86.92 

(1.41) 

79.60 

(2.32) 

Contraharmonic Mean 
 

( )0.5l = −  4
r  1 

94.48 

(0.59) 

94.64 

(0.47) 

94.24 

(0.71) 

94.44 

(0.40) 

94.04 

(1.01) 

93.76 

(0.60) 

92.84 

(0.89) 

92.36 

(0.97) 

87.96 

(0.74) 

  2 
94.84 

(0.44) 

94.68 

(0.27) 

94.52 

(0.53) 

94.52 

(0.53) 

94.36 

(0.79) 

94.28 

(0.68) 

94.12 

(0.96) 

93.08 

(1.19) 

89.40 

(1.25) 

  3 
95.00 

(0.54) 

95.12 

(0.41) 

94.56 

(0.51) 

95.12 

(0.59) 

94.12 

(0.82) 

94.64 

(0.76) 

94.16 

(0.80) 

92.64 

(1.44) 

89.32 

(1.69) 

  4 
95.48 

(0.46) 

95.12 

(0.49) 

95.20 

(0.96) 

95.12 

(0.49) 

94.88 

(1.03) 

94.48 

(0.98) 

93.48 

(0.98) 

93.64 

(1.04) 

89.64 

(1.01) 

  5 
95.64 

(0.44) 

95.28 

(0.41) 

95.00 

(0.39) 

95.00 

(0.83) 

94.76 

(0.87) 

94.60 

(0.98) 

94.36 

(1.02) 

92.76 

(1.54) 

89.76 

(1.43) 

  6 
96.08 

(0.37) 

95.44 

(0.51) 

95.48 

(0.87) 

95.48 

(0.80) 

94.92 

(0.65) 

94.56 

(1.02) 

94.56 

(0.83) 

93.24 

(1.43) 

90.52 

(1.33) 

  7 
95.80 

(0.54) 

96.04 

(0.72) 

95.48 

(0.50) 

95.60 

(0.57) 

95.28 

(0.75) 

94.64 

(1.20) 

94.32 

(0.65) 

93.48 

(1.18) 

90.16 

(0.93) 
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Table 3 (Continued)           

Contraharmonic Mean 
 

( )1.0l = −  4
r  1 

94.60 

(0.43) 

94.56 

(0.28) 

94.60 

(0.69) 

94.76 

(0.40) 

94.80 

(0.92) 

94.48 

(0.77) 

94.68 

(0.78) 

93.40 

(1.05) 

90.04 

(0.81) 

  2 
95.04 

(0.28) 

94.84 

(0.23) 

94.60 

(0.39) 

94.92 

(0.38) 

94.64 

(0.66) 

94.52 

(0.65) 

94.44 

(0.67) 

93.48 

(1.03) 

92.20 

(0.91) 

  3 
95.36 

(0.28) 

95.28 

(0.37) 

95.20 

(0.78) 

94.88 

(0.41) 

94.68 

(0.89) 

94.70 

(0.58) 

94.40 

(0.65) 

94.12 

(1.16) 

91.68 

(1.33) 

  4 
95.56 

(0.23) 

95.44 

(0.43) 

95.28 

(0.37) 

95.08 

(0.38) 

94.84 

(0.40) 

94.84 

(0.67) 

94.44 

(0.99) 

93.56 

(0.99) 

92.24 

(1.15) 

  5 
95.72 

(0.27) 

95.48 

(0.33) 

95.64 

(0.48) 

95.60 

(0.68) 

95.24 

(0.76) 

95.00 

(0.47) 

94.60 

(0.74) 

94.36 

(1.09) 

92.60 

(0.95) 

  6 
96.00 

(0.33) 

96.12 

(0.42) 

95.72 

(0.38) 

95.64 

(0.67) 

95.60 

(0.60) 

94.92 

(0.60) 

94.80 

(0.46) 

94.08 

(1.10) 

92.64 

(1.32) 

  7 
96.40 

(0.38) 

96.60 

(0.39) 

96.16 

(0.57) 

95.96 

(0.55) 

95.40 

(0.43) 

95.24 

(0.76) 

95.00 

(0.76) 

93.96 

(0.67) 

92.96 

(1.40) 

Contraharmonic Mean 
 

( )1.5l = −  4
r  1 

94.92 

(0.27) 

94.84 

(0.40) 

94.52 

(0.50) 

94.84 

(0.48) 

94.36 

(0.30) 

94.52 

(0.65) 

94.96 

(0.54) 

93.92 

(0.70) 

91.68 

(1.32) 

  2 
94.88 

(0.53) 

95.08 

(0.42) 

94.76 

(0.40) 

94.84 

(0.72) 

95.04 

(0.71) 

94.96 

(0.78) 

94.48 

(0.88) 

93.84 

(0.66) 

93.20 

(0.98) 

  3 
95.28 

(0.25) 

95.60 

(0.33) 

95.56 

(0.48) 

95.40 

(0.54) 

95.40 

(0.60) 

95.08 

(0.42) 

95.00 

(0.51) 

94.88 

(0.80) 

92.92 

(0.96) 

  4 
95.64 

(0.30) 

95.36 

(0.34) 

95.48 

(0.42) 

95.68 

(0.53) 

95.08 

(0.73) 

95.16 

(0.74) 

94.84 

(0.61) 

94.36 

(0.72) 

93.40 

(1.09) 

  5 
96.12 

(0.38) 

95.92 

(0.25) 

96.08 

(0.41) 

96.12 

(0.53) 

95.68 

(0.37) 

95.28 

(0.45) 

94.96 

(0.66) 

95.00 

(0.51) 

93.76 

(0.91) 

  6 
96.88 

(0.25) 

96.92 

(0.42) 

96.68 

(0.42) 

96.48 

(0.49) 

95.92 

(0.67) 

95.76 

(0.57) 

95.64 

(0.48) 

94.60 

(0.76) 

93.48 

(0.68) 

  7 
97.20 

(0.19) 

96.80 

(0.27) 

97.04 

(0.34) 

96.76 

(0.40) 

96.16 

(0.57) 

95.72 

(0.53) 

95.32 

(0.65) 

94.84 

(1.15) 

93.12 

(1.14) 

Minimum 4
r  1 

94.92 

(0.27) 

94.60 

(0.54) 

94.76 

(0.58) 

94.56 

(0.54) 

94.64 

(0.63) 

94.56 

(0.76) 

94.44 

(0.81) 

92.72 

(1.62) 

83.76 

(2.17) 

  2 
94.84 

(0.30) 

95.16 

(0.44) 

95.08 

(0.38) 

94.84 

(0.51) 

95.04 

(0.51) 

94.92 

(0.84) 

94.96 

(0.76) 

94.24 

(0.57) 

91.04 

(1.58) 

  3 
96.04 

(0.13) 

96.08 

(0.17) 

96.04 

(0.30) 

96.16 

(0.34) 

95.88 

(0.50) 

95.56 

(0.61) 

95.20 

(0.65) 

94.92 

(0.53) 

94.12 

(0.84) 

  4 
96.04 

(0.13) 

96.08 

(0.25) 

96.24 

(0.34) 

96.24 

(0.43) 

95.96 

(0.64) 

95.84 

(0.54) 

95.72 

(0.65) 

95.00 

(0.93) 

94.64 

(0.74) 

  5 
96.04 

(0.40) 

96.16 

(0.28) 

96.48 

(0.37) 

96.20 

(0.51) 

96.20 

(0.63) 

95.40 

(0.78) 

95.44 

(0.89) 

95.00 

(0.76) 

94.80 

(0.71) 

  6 
95.72 

(0.38) 

95.60 

(0.27) 

95.56 

(0.44) 

95.16 

(0.67) 

95.24 

(0.40) 

95.32 

(0.38) 

95.12 

(0.45) 

94.84 

(1.02) 

94.72 

(1.08) 

  7 
94.60 

(0.43) 

94.76 

(0.40) 

95.08 

(0.60) 

94.52 

(0.65) 

94.92 

(0.89) 

94.80 

(0.92) 

94.40 

(0.46) 

94.28 

(1.21) 

93.92 

(1.26) 

1
Q  

4
r  1 

94.88 

(0.25) 

94.76 

(0.35) 

94.48 

(0.32) 

94.44 

(0.51) 

93.96 

(0.51) 

91.88 

(0.73) 

86.08 

(1.99) 

77.24 

(2.17) 

54.68 

(3.69) 

  2 
94.88 

(0.37) 

94.72 

(0.32) 

94.72 

(0.56) 

94.92 

(0.27) 

94.40 

(0.63) 

93.12 

(0.96) 

85.80 

(2.08) 

65.04 

(2.27) 

37.68 

(2.60) 

  3 
95.20 

(0.33) 

94.84 

(0.55) 

94.80 

(0.50) 

94.84 

(0.48) 

94.16 

(0.66) 

94.20 

(0.43) 

85.84 

(2.22) 

59.24 

(4.65) 

30.84 

(2.92) 

  4 
95.96 

(0.23) 

95.56 

(0.55) 

95.12 

(0.53) 

95.12 

(0.65) 

94.88 

(0.41) 

94.44 

(0.64) 

87.08 

(1.62) 

51.00 

(3.28) 

27.40 

(1.69) 

  5 
96.36 

(0.35) 

96.32 

(0.45) 

95.68 

(0.37) 

95.72 

(0.38) 

95.28 

(0.49) 

94.28 

(0.46) 

87.84 

(1.24) 

45.72 

(2.52) 

25.80 

(1.62) 

  6 
97.12 

(0.17) 

97.08 

(0.19) 

96.16 

(0.28) 

95.20 

(0.42) 

95.36 

(0.57) 

94.36 

(0.64) 

89.44 

(1.91) 

40.28 

(3.62) 

25.88 

(0.94) 

  7 
97.20 

(0.00) 

97.16 

(0.13) 

96.92 

(0.27) 

96.08 

(0.53) 

95.28 

(0.65) 

94.20 

(0.66) 

90.36 

(1.18) 

38.56 

(3.15) 

26.08 

(1.32) 

Median 4
r  1 

94.76 

(0.13) 

94.60 

(0.43) 

93.88 

(0.91) 

92.68 

(1.13) 

88.36 

(1.90) 

79.40 

(3.41) 

66.40 

(2.40) 

47.40 

(4.01) 

29.84 

(3.57) 

  2 
94.68 

(0.19) 

94.64 

(0.28) 

94.36 

(0.48) 

92.52 

(0.78) 

82.68 

(1.64) 

64.00 

(3.35) 

45.12 

(3.26) 

30.48 

(2.38) 

25.24 

(1.21) 

  3 
94.72 

(0.25) 

94.52 

(0.19) 

94.56 

(0.43) 

93.84 

(0.80) 

77.52 

(2.32) 

52.52 

(2.77) 

35.16 

(2.71) 

27.28 

(0.82) 

25.92 

(0.90) 

  4 
94.76 

(0.23) 

94.52 

(0.19) 

94.64 

(0.51) 

94.12 

(0.73) 

73.88 

(1.78) 

43.48 

(3.14) 

32.68 

(1.33) 

27.76 

(0.89) 

26.16 

(1.25) 

  5 
95.24 

(0.30) 

94.56 

(0.34) 

94.24 

(0.47) 

94.48 

(0.59) 

71.84 

(3.09) 

38.08 

(3.49) 

30.92 

(1.05) 

27.68 

(1.25) 

25.56 

(0.91) 

  6 
95.56 

(0.35) 

94.88 

(0.41) 

94.44 

(0.64) 

94.32 

(0.41) 

71.88 

(2.41) 

33.28 

(2.30) 

30.08 

(1.01) 

27.76 

(0.93) 

25.33 

(1.16) 

  7 
95.32 

(0.33) 

94.88 

(0.53) 

94.52 

(0.57) 

94.64 

(0.57) 

68.56 

(2.69) 

30.08 

(2.78) 

30.84 

(0.93) 

27.68 

(0.73) 

25.56 

(0.91) 

*Note: The bold values indicate a statistically significant difference in identification accuracy rates between the algorithm with and without the 

denoising spatial kernel. 

 



 

Zun Liang Chuan, Abraham Lim Bing Sern, Tan Chek Cheng, Abdul Aziz Jemain & Choong-Yeun Liong 

244 

 

5.3. Salt-and-pepper noise 

Building upon the findings from the pepper and salt noise analyses, this section extends the 

evaluation to salt-and-pepper noise, providing a comprehensive assessment of the FLDA-based 

ballistic identification algorithm. Table 4 presents identification accuracy rates for images 

processed utilizing an ROI sized at ( )
2

2
r  and ( )

2

4
r  The analysis reaffirms the algorithm’s 

robustness, achieving identification rates exceeding 90% across varying noise levels. 

Specifically, identification surpasses this threshold at 0.4   for ( )
2

2
r  and 0.6   for 

( )
2

4
r , further validates the superiority of the smaller ROI size in maintaining identification 

accuracy under noise contamination. 

Moreover, as observed in the pepper and salt noise analyses, performance improvements are 

evident when appropriate denoising spatial kernels are employed. Table 4 highlights that noise 

levels ranging from 0.6   to 0.8,   the application of denoising techniques significantly 

enhance identification accuracy. Among the evaluated approaches, the median denoising spatial 

kernels with 5 =  proves to be the most effective, offering a favorable balance between 

computational efficiency and noise suppression. Notably, this kernel exhibits a shorter 

execution time compared to kernels with 6 =  and 7, =  establishing it as the optimal 

universal denoising technique for mitigating salt-and-pepper noise in this study. 

Table 4: Enhancing identification accuracy: Impact of denoising spatial kernels and segmentation window         

size on salt-and-pepper noise levels 

Kernel r    Identification accuracy rates (%) at noise level of  (standard deviation (%))  

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 

Without kernel 2
r  - 

94.36 

(0.97) 

93.16 

(0.79) 

92.44 

(1.42) 

90.40 

(1.57) 

85.40 

(2.50) 

77.20 

(2.60) 

69.48 

(3.05) 

55.04 

(2.26) 

41.56 

(3.91) 

Median 2
r  1 

94.64 

(0.21) 

94.56 

(0.51) 

94.40 

(0.68) 

94.08 

(0.77) 

91.40 

(1.05) 

84.68 

(1.78) 

72.48 

(3.87) 

58.56 

(1.84) 

40.48 

(3.26) 

  2 
94.52 

(0.19) 

94.60 

(0.28) 

94.28 

(0.46) 

94.28 

(0.38) 

94.40 

(0.57) 

92.84 

(0.74) 

81.64 

(2.49) 

63.64 

(1.83) 

41.28 

(2.10) 

  3 
94.12 

(0.33) 

94.40 

(0.38) 

94.36 

(0.55) 

94.36 

(0.48) 

94.40 

(0.42) 

93.92 

(0.92) 

88.92 

(1.52) 

66.92 

(2.44) 

42.24 

(3.06) 

  4 
93.84 

(0.34) 

93.96 

(0.44) 

94.32 

(0.49) 

94.32 

(0.41) 

94.36 

(0.55) 

94.00 

(0.53) 

92.28 

(0.80) 

75.80 

(2.55) 

43.20 

(1.87) 

  5 
93.76 

(0.34) 

93.68 

(0.32) 

94.40 

(0.46) 

94.24 

(0.54) 

94.48 

(0.62) 

93.84 

(1.05) 

93.52 

(0.75) 

83.40 

(1.52) 

46.12 

(2.32) 

  6 
93.84 

(0.47) 

94.32 

(0.65) 

94.44 

(0.44) 

93.80 

(0.39) 

94.28 

(0.68) 

93.96 

(0.61) 

93.36 

(0.66) 

88.40 

(2.30) 

48.20 

(2.10) 

  7 
94.40 

(0.63) 

94.00 

(0.53) 

94.36 

(0.85) 

94.12 

(0.33) 

94.64 

(0.51) 

94.08 

(0.59) 

93.24 

(0.83) 

90.80 

(1.80) 

51.76 

(2.55) 

Without kernel 4
r  - 

94.44 

(0.30) 

94.20 

(0.43) 

94.32 

(0.80) 

93.36 

(0.80) 

92.96 

(1.10) 

90.84 

(0.95) 

87.40 

(1.94) 

77.64 

(2.87) 

54.36 

(3.08) 

Median 4
r  1 

94.52 

(0.33) 

94.64 

(0.34) 

94.60 

(0.28) 

94.40 

(0.38) 

93.96 

(0.74) 

93.48 

(1.07) 

90.00 

(1.52) 

79.00 

(2.20) 

53.36 

(4.00) 

  2 
94.52 

(0.19) 

94.64 

(0.34) 

94.64 

(0.39) 

94.28 

(0.42) 

94.52 

(0.57) 

94.16 

(0.98) 

92.08 

(0.53) 

84.20 

(3.13) 

57.48 

(1.96) 

  3 
94.76 

(0.30) 

94.84 

(0.30) 

94.64 

(0.51) 

94.60 

(0.63) 

94.92 

(0.46) 

94.76 

(0.72) 

93.88 

(0.53) 

88.20 

(1.52) 

59.32 

(2.71) 

  4 
95.20 

(0.50) 

94.96 

(0.47) 

94.52 

(0.46) 

94.96 

(0.34) 

94.88 

(0.17) 

94.72 

(0.41) 

94.40 

(1.03) 

89.88 

(1.49) 

60.96 

(2.98) 

  5 
95.56 

(0.35) 

95.68 

(1.37) 

95.20 

(0.53) 

94.84 

(0.69) 

94.68 

(0.63) 

94.80 

(0.68) 

94.40 

(0.73) 

92.20 

(1.86) 

63.12 

(2.57) 

  6 
95.76 

(0.28) 

95.84 

(0.34) 

95.52 

(0.41) 

95.20 

(0.42) 

95.24 

(0.48) 

95.16 

(0.40) 

94.76 

(0.74) 

92.96 

(0.89) 

66.28 

(3.60) 

  7 
95.56 

(0.51) 

95.40 

(0.69) 

95.48 

(0.27) 

95.12 

(0.49) 

95.08 

(0.57) 

95.28 

(1.11) 

95.08 

(0.38) 

94.12 

(1.32) 

67.76 

(3.08) 

*Note: The bold values indicate a statistically significant difference in identification accuracy rates between the algorithm with and without 

denoising spatial kernel. 
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6. Conclusion and Recommendations for Future Work 

This study provides a comprehensive evaluation of statistical computing techniques for forensic 

firearm identification, specifically assessing the robustness of the FLDA-based ballistic 

identification algorithm against fixed-value impulse noise. Through the simulation of pepper, 

salt, and salt-and-pepper noise at varying contamination levels (10% to 90%), this research 

systematically examines the algorithm’s performance when paired with various denoising 

spatial kernels. The findings reveal that the algorithm maintains high identification accuracy 

rates ( )90%  for pepper and salt noise when associated with maximum-ranked and minimum-

ranked ordered denoising spatial kernels, respectively. For salt-and-pepper noise, a median 

denoising spatial kernel ( )2 25 =  proves universally superior, striking a balance between 

accuracy and computation efficiency. This study further confirms that a segmentation window 

size of ( )
2

4
r  enhances identification accuracy, aligning with prior literature. Notably, 

identification performance deteriorates at noise levels exceeding 0.6, =  necessitating the 

utilization of denoising spatial kernels to preserve forensic reliability. 

These results highlight the potential of FLDA-based statistical computing techniques in 

forensic applications by reducing reliance on physical verification and accelerating forensic 

investigations. This study aligns with the United Nations Sustainable Development Goals 

(SDGs) by advancing Artificial Intelligence (AI)-driven forensic methodologies (SDG9: 

Industry, Innovation, and Infrastructure) and strengthening forensic accuracy in criminal 

investigations (SDG16: Peace, Justice, and Strong Institutions), ultimately contributing to 

national security and judicial efficiency.  While this study establishes a statistical framework 

for evaluating noise resilience in forensic firearm identification, future research could explore 

expanding the dataset to mitigate overfitting and underfitting. Additionally, integrating the 

FLDA-based approach into mobile forensic applications could further enhance accessibility and 

operational efficiency in real-time forensic investigations. 
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