Journal of Quality Measurement and Analysis JOMA 21(4) 2025, 167-194
e-ISSN: 2600-8602 http://www.ukm.my/jgma
https://doi.org/10.17576/jqma.2104.2025.10

COMPARING AN INTEGRATED DATA ENVELOPMENT ANALYSIS
AND MACHINE LEARNING MODELS FOR ACCURATE ACADEMIC
EFFICIENCY PREDICTION

(Perbandingan Model Integrasi Analisis Kesimpulan Data dan Pembelajaran Mesin untuk
Ramalan Kecekapan Akademik yang Tepat)

NOR FAEZAH MOHAMAD RAZI*, NORHAYATI BAHARUN & SURAYA MASROM

ABSTRACT

The integration of data envelopment analysis (DEA) with machine learning (ML) offers a novel
approach to evaluating academic efficiency beyond traditional measures like CGPA. This study
develops an efficiency assessment framework combining DEA and ML to predict student
academic achievement efficiency. The objectives are (1) to identify and validate input and
output variables for DEA-based academic efficiency measurement and (2) to develop an
integrated predictive model using DEA and ML for improved accuracy. A cross-sectional study
was conducted on 1,099 final-year diploma students, collecting data on CGPA, satisfaction, and
five competency domains (personal, adaptive, digital, social, and 21st-century skills). Efficiency
scores were computed using the BCC and CCR DEA models, followed by ML predictions using
random forest (RF), gradient boosting regressor (GBR), artificial neural networks (ANN), and
AutoML via genetic programming. Performance was evaluated using RMSE, MAE, and R?
metrics. The findings indicate that the DEA-GBR model achieved the highest predictive
accuracy (RMSE = 0.0101, MAE = 0.0039, R? = 0.9889), outperforming other models. SHAP
analysis identified digital competency as the most influential predictor, aligning with UiTM’s
digital transformation goals. The integration of DEA with ML significantly improved
discriminatory power, reducing the number of efficient decision-making units (DMUs) from
134 to as low as 44. This study enhances academic efficiency assessment by integrating DEA
with predictive ML models, providing a data-driven approach for student performance
evaluation. Future research should expand datasets and explore additional ML techniques for
further refinement.
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ABSTRAK

Integrasi analisis penyampulan data (DEA) dengan pembelajaran mesin (ML) menawarkan
pendekatan baru untuk menilai kecekapan akademik melangkaui ukuran tradisional seperti
CGPA. Kajian ini membangunkan rangka kerja penilaian kecekapan yang menggabungkan
DEA dan ML untuk meramal kecekapan pencapaian akademik pelajar. Justeru itu, objektif
kajian ini adalah (1) untuk mengenal pasti dan mengesahkan pembolehubah input dan output
untuk pengukuran kecekapan akademik berasaskan DEA dan (2) untuk membangunkan model
ramalan bersepadu menggunakan DEA dan ML untuk ketepatan yang lebih baik. Kajian keratan
rentas telah dijalankan ke atas 1,099 pelajar diploma tahun akhir, mengumpul data mengenai
CGPA, kepuasan, dan lima domain kompetensi (peribadi, penyesuaian, digital, sosial, dan
kemahiran abad ke-21). Markah kecekapan dikira menggunakan model BCC dan CCR DEA,
diikuti dengan ramalan ML menggunakan hutan rawak (RF), regresor penggalak kecerunan
(GBR), rangkaian neural buatan (ANN) dan AutoML melalui pengaturcaraan genetik. Prestasi
dinilai menggunakan metrik RMSE, MAE dan R2. Dapatan menunjukkan bahawa model DEA-
GBR mencapai ketepatan ramalan tertinggi (RMSE = 0.0101, MAE = 0.0039, R? = 0.9889),
mengatasi prestasi model lain. Analisis SHAP mengenal pasti kompetensi digital sebagai
peramal yang paling berpengaruh, sejajar dengan matlamat transformasi digital UiTM.
Penyepaduan DEA dengan ML telah meningkatkan kuasa diskriminasi dengan ketara,
mengurangkan bilangan unit membuat keputusan (DMU) yang cekap daripada 134 kepada
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serendah 44. Kajian ini meningkatkan penilaian kecekapan akademik dengan menyepadukan
DEA dengan model ML ramalan, menyediakan pendekatan dipacu data untuk penilaian prestasi
pelajar. Penyelidikan masa depan harus mengembangkan set data dan meneroka teknik ML
tambahan untuk pemurnian selanjutnya.

Kata kunci: analisis penyampulan data; pembelajaran mesin; kecemerlangan pelajar

1. Introduction

The increasing demand for evidence-based approaches in education has spurred interest in
methods that can evaluate and enhance academic achievement. Academic achievement
traditionally encompasses the knowledge, skills, and behaviors that students acquire in
educational settings, often measured by quantifiable outcomes like Cumulative Grade
Performance Average (CGPA). Historically, higher education success was primarily gauged
through final exam performances; however, this measure is increasingly seen as inadequate for
capturing the full spectrum of student competencies. Modern educational discourse now
advocates for integrating broader competencies such as critical thinking, creativity, problem-
solving abilities, and emotional intelligence into evaluations, recognizing these skills as
essential for real-world readiness (Camanho ef al. 2021; Yavuzalp & Bahcivan 2021).
However, traditional techniques often fail to provide accurate or actionable insights into
efficiency due to their inability to account for complex, multidimensional data. The integration
of these competencies into academic assessments is vital for developing well-rounded
individuals who can meet contemporary employers' expectations. By understanding graduates'
comprehensive capabilities, such as problem-solving skills and adaptability, educators and
administrators can tailor educational resources and support to better align academic outcomes
with job market demands. This holistic evaluation approach ensures that higher education not
only enhances the quality of its graduates but also prepares them effectively to meet
professional challenges and fulfill employer expectations (Behle 2020; Datnow et al. 2022).

Forming a good academic achievement holistically means there is a need to evaluate all the
resources that have been provided to the student and how well the student utilized it. Therefore,
it involves a very complex measurement. Dealing with this issue, the non-parametric method
(data envelopment analysis) has a better dispersion of results than the parametric method in
measuring efficiency (Farantos 2015). Data envelopment analysis has been broadly used to
evaluate efficiency in many areas such as financial institutions (de Abreu & Kimura 2020;
Ebrahimi & Hajizadeh 2021; Tsolas et al. 2020), farming (Nandy & Singh 2021), hospitals
(Cinaroglu 2021; Misiunas et al. 2016), airlines (Alcaraz et al. 2021; Ozsoy & Orkcii 2021),
and government agencies (Zhang & Shi 2019). Even though several research works have
provided insights into the richness of DEA applications, many aspects of efficiency still need
to be explored. Particularly in education field, previous literature measures achievement
efficiency lacking in determining academic achievement. Most studies related to application of
DEA in education field were to measure the performance of in the schools (Camanho et al.
2021; Esteve et al. 2020) and universities (Zhang & Shi 2019). It is due to the changes in the
education landscape measuring student academic achievement will help higher institution
management and educators evaluate the resources provided to students during their learning
process and, in turn, can improve the quality of academic achievement.

DEA not only assesses the efficiency of educational entities by determining how effectively
individuals or institutions utilize their inputs to produce outputs, but it also identifies inputs that
are not being optimally used (Shero et al. 2022). This ability to pinpoint inefficiencies helps in
refining educational strategies and resource allocation. Widely adopted across educational
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research, DEA has been instrumental in evaluating the performance of schools and universities,
providing insights that guide improvements in educational practices. Despite the widespread
use of DEA in educational efficiency analysis, its predictive potential remains underutilized.
Similarly, while ML models are employed for predictive tasks, they lack the capacity to provide
efficiency-specific insights. This gap highlights the need for a framework that combines DEA's
evaluation strengths with ML's predictive power, enabling more nuanced and accurate analysis.
This study addresses these limitations by integrating data envelopment analysis (DEA), a well-
established efficiency evaluation tool, with machine learning (ML), renowned for its predictive
capabilities.

Thus, this study aims to develop a full framework implementation of DEA model with ML
approaches to predict the student’s academic achievement efficiency. Therefore, in the
objectives of the study, the following are the objectives that need to be achieved:

1. To evaluate the selection of input and output variables for measuring the academic
achievement efficiency of final year diploma students using the DEA model.

2. To develop predictive models for the academic achievement efficiency score based on
integrated DEA and ML approaches.

As new research on predicting efficiency score of students' academic achievement for DEA
model using ML approaches will create a new research question that requires extensive
empirical research work. All the research works need to be designed appropriately, considering
many aspects based on the selection input and output variables and the ML configurations. The
empirical works should observe how the ML algorithm can influence the efficiency score.
Additionally, it is essential to look at the selection of input and output variables and its
efficiency score to ML accuracy. It is also vital to observe ML performances with the other
kind of ML algorithms. Thus, this research will fill the research gap on the development of
predictive model using integrated method using DEA and ML approaches.

2. Literature Review

2.1. An overview of efficiency analysis in education

The primary objective of the literature review is to elucidate the development of Performance
Evaluation method in measuring academic achievement in education area and prior research
findings pertinent to this study, with a particular emphasis on data envelopment analysis (DEA).
Efficiency in education occurs at a time when the output can be test results or added value
produced at a minimum level or resources, such as finance or the natural ability of students
(Johnes 2015). This refers to achieving maximum results (output) using minimum effort (input)
in limited time. Whereas according to Ghaffarian Asl and Osam (2021), effectiveness can be
seen as compatibility between the output that is the main goal and other criteria in relation to
efficiency. This means that consider effectiveness and efficiency as two dimensions of
institutional performance (Lindsay 1982). It can be said that when an organization or an
individual has high efficiency, it will always increase the effectiveness of the achievement of
that achievement. Table 1 provides a comprehensive review of various studies that assess the
efficiency of educational institutions across different countries, employing a range of
methodologies and efficiency models.

Numerous methodologies for efficiency analysis have been developed (Table 1),
demonstrating valuable progress in supporting decision-makers in making informed choices.
Pure technical in efficiency model dominantly its study globally such as in Spanish, Contreras
& Lozano (2022) had analyzed the Spanish public university system in order to maximize its
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efficiency involving 84 universities. Studied in Germany by Zarrin (2021) and Gralka et al.
(2019) involving 28 university hospitals in Germany. While Camanho et a/. (2021) investigates
the relationship between students’ performance and the type of school attended during upper
secondary education. Overall, looking at the assessment column, it was found that the focus of
existing studies largely centers on teaching and research. This leaves other critical educational
outputs, such as student employability, satisfaction, and post-graduation success, relatively
underexplored. Expanding the focus on these areas could provide a broader understanding of
educational outcomes. Lastly, the research predominantly relies on traditional DEA models.
Exploring newer or unconventional efficiency models could yield fresh insights, particularly in
managing complex educational environment.

Table 1. A listing of recent studies on university efficiency analysis

Research Country Methodology Efficiency Assessment Duration
model
(Contreras & Lozano Spanish DEA Pure Technical Overall 2016
2022)
(Camanho et al. 2021) Italy DEA Malmquist Teaching and 2017-2018
index Research
(Tavares et al. 2021) Brazil Network DEA Technical & Teaching and
Scale Learning
(Zarrin 2021) Germany DEA Pure Technical Teaching and
Learning
(Tran et al. 2020) Vietnam Stochastic Teaching and 2013-2014
Frontier Learning
(Segovia-Gonzalez et UK DEA Pure Technical Teaching and 2018
al. 2020) Research
(Gralka et al. 2019) Germany DEA Pure Technical Research 2004-2013
SFA
(Yang et al. 2018) China Two-stage DEA  Not mentioned Research 2010-2013
(Jauhar et al. 2017) India VRS Pure Technical Teaching and 2001/02-
Learning 2012/13
(Sagarra et al. 2017) Mexico VRS Pure Technical Teaching and 2007-2012
Learning
(Munoz 2016) Chile CRS and VRS Pure Technical Research 2013-2014
(Pietrzak et al. 2016) Poland DEA Scale Research 2013-2014
(Aziz et al. 2013) Malaysia DEA Technical Overall 2011

2.2. Data envelopment analysis

Data envelopment analysis (DEA) is a non-parametric performance measurement tool
introduced by Charnes, Cooper, and Rhodes in 1978 to evaluate the efficiency of Decision-
Making Units (DMUs) such as businesses, government agencies, healthcare facilities, and
educational institutions. Unlike traditional evaluation methods, DEA uses linear programming
to compare the ratio of inputs (resources) to outputs (results) without requiring predefined
weights or financial benchmarks (Ray 2022). The model assesses efficiency relative to a
frontier, where DMUs on the frontier are efficient, while those below it are inefficient (Cooper
et al. 2007). DEA has evolved with various models, including the CCR model (constant returns
to scale) and the BCC model (variable returns to scale), making it adaptable for real-world
efficiency assessments. In education, DEA is widely used to evaluate the efficiency of
institutions, programs, and policies by analyzing how well resources such as faculty and
funding contribute to student success (Zubir ef al. 2024; Zubir et al. 2023).The ability of DEA
to handle multiple inputs and outputs while accommodating complex educational structures
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makes it a valuable tool for assessing institutional performance (Abramo et al. 2018; Pokushko
et al. 2020).

Despite its advantages, DEA has limitations, particularly its lack of predictive power and
sensitivity to statistical noise, which can distort efficiency assessments (Jauhar et al. 2023;
Zhong et al. 2021). Additionally, DEA's computational demands increase significantly with
larger datasets containing numerous inputs and outputs, limiting its scalability (Emrouznejad
& Shale 2009). While DEA has traditionally been used for institutional efficiency evaluations,
recent studies have applied it at the individual level, treating students as DMUs to analyze
academic efficiency. Efficient score predictions from DEA are essential for benchmarking
performance and guiding resource allocation. Integrating machine learning (ML) with DEA has
been proposed as a solution to enhance predictive capabilities, allowing for proactive and
strategic decision-making in education. By addressing DEA’s predictive limitations and
computational challenges, future research can further optimize its role in assessing and
improving educational efficiency.

2.3. Machine learning

Machine learning (ML), a subset of artificial intelligence (Al), enables systems to learn from
data and make predictions with minimal human intervention. Integrating ML with data
envelopment analysis (DEA) enhances DEA’s ability to handle complex data patterns, improve
predictive accuracy, and strengthen efficiency evaluations. DEA, traditionally used to assess
the efficiency of Decision-Making Units (DMUs), is limited in managing non-linear
relationships and large datasets. ML techniques, known for their flexibility and pattern-
recognition capabilities, complement DEA by allowing for more advanced performance
assessments (Avramidou & Tjortjis 2021; Sampath Kumar et al. 2023). Predictive modeling, a
key aspect of ML, includes regression for continuous outcomes and classification for discrete
categories. Regression models have been applied in areas such as environmental impact
assessment and agricultural planning, while classification models have been used in education
to predict student performance and early intervention strategies (Umer et al. 2017). The
combination of DEA and ML enables more dynamic efficiency evaluations, expanding DEA’s
traditional applications beyond static measurements.

Integrating ML into DEA frameworks improves model functionality, interpretability, and
robustness across various domains. ML techniques enhance feature selection, enabling DEA to
focus on the most influential variables while handling large multidimensional datasets. This
makes DEA more applicable in complex, data-rich environments such as healthcare, finance,
and education (Abramo et al. 2018; Pokushko et al. 2020). The synergy between DEA and ML
bridges gaps in traditional DEA models, increasing predictive power and supporting more data-
driven decision-making. Empirical studies confirm the feasibility and effectiveness of this
integration, demonstrating its ability to enhance performance evaluation and benchmarking
(Zhong et al. 2021; Jauhar et al. 2023). This evolving integration offers valuable insights for
further exploration, highlighting the potential of hybrid DEA-ML models in various industries.
Table 2 provides a summary of key findings on the integration of DEA with ML techniques.

By combining the literature of DEA methods and machine learning integration method, we
can notice that some of studies reflect the evolving integration of data envelopment analysis
(DEA) with various ML techniques to enhance performance evaluation, efficiency
measurement, and predictive accuracy across diverse fields. They have achieved good results
through empirical studies and verified the reasonableness and feasibility of the integrated
model. of DEA and ML. This provides valuable experience for further in-depth exploration.
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Table 2: Previous findings on integrating DEA with machine learning approaches

References Integrating Approach Application

(De La Hoz et al. 2021) DEA To evaluate and forecast the academic efficiency
Clustering of engineering programs in Colombia.

(Zhishuo Zhang et al. DEA-SBM Proposes a performance prediction method

2022) 11 ML Algorithm

(Singpai & Wu 2020) DEA To assess and predict performance in SDGs
AutoML

(Zhong et al. 2021) SE-SBM To construct the regression model.
15 ML algorithm

(Jomthanachai et al. DEA To predict and determine the risk level based on

2021) ML the efficiency of DMUs.

(Liu et al. 2021) DEA This study is to forecast annual fishery capacity.
Regression

Xu et al. 2021) DEA To predict the U.S COVID-19 response
ML (CART, BT, RF, LR) performance.

(Zhu et al. 2021) DEA To predict the DEA efficiency of DMU .
ML

(Akhavan Kharazian ez DEA Determines the efficiency of individuals

al. 2019) CART

(Tsaples et al. 2022) DEA To explore country sustainability composite
CART indices under different perceptions and

assumptions.

2.4. Identified research gaps

Gap 1: Subjectivity in input and output selection for DEA analysis

Through comprehensive literature exploration, it has been found that input and output selection
in data envelopment analysis (DEA) is a critical step that significantly influences the scope and
conclusions of efficiency analysis. In the context of education, outputs typically represent
outcomes from various educational levels (e.g., primary, secondary, post-secondary), while
inputs are the mechanisms by which decision-making units (DMUs) achieve these outcomes.
Many research highlighted the importance of the selection of inputs and outputs in DEA,
however, they found that they were inherently subjective. Variables such as Human Resources,
Facilities, Financials, Equipment, Curriculum, Student Characteristics, and Community
Resources are commonly categorized as input themes, while Student Achievement, Graduation
Rates, Employment Outcomes, and Research Outcomes serve as output themes. This diversity
reflects the wide-ranging factors influencing educational efficiency. Yet, the absence of
universally accepted guidelines for defining these variables introduces inconsistency, limiting
the comparability and validity of results. Misaligned or irrelevant variable selection can result
in inaccurate evaluations of DMU performance, undermining the reliability of DEA analyses
in education. The systematic studies conducted by Mohamad Razi et al. (2024) compiled seven
input themes and four output themes, it is evident that the selection of input and output variables
in efficiency studies lacks a standardized rule or benchmarking framework. This situation
highlights a notable gap: an overemphasis on traditional inputs, such as human resources,
financial resources, and student characteristics, while limited attention is given to broader, more
comprehensive competencies. Based on current research, there were no studies that use student
achievement and student satisfaction as input and student competencies (personal, adaptive,
social, digital and 21st competencies) as output to be included in the potential selection input
and output to measure student academic efficiency. This would be a significant literature gap
that this study could fulfill. By introducing new input and output into the selection of input and
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output in measuring efficiency in education can lead to varying efficiency scores (Ahn ef al.
2022) and allows more nuance understanding of efficiency (Mosbah et al. 2020).

Gap 2: Limitations in DEA’s predictive capabilities and efficiency evaluation

Another significant methodological gap is the evaluation of efficiency scores through the
integration of DEA with ML approaches, including conventional algorithms, artificial neural
networks (ANN), and automated machine learning (AutoML) frameworks. While DEA is
widely recognized for assessing efficiency, its reliance on deterministic models often limits its
adaptability to dynamic and complex datasets. For instance, when a new DMU requires an
efficiency score, the DEA analysis must be re-conducted, as noted by (Anouze & Bou-Hamad
2019; Zhu et al. 2021). To address these limitations, developing a predicted model for
efficiency scores becomes essential. Integrating DEA with ML approaches mitigates many of
DEA's inherent limitations, such as the inability to handle large, complex datasets and its lack
of predictive capabilities. Moreover, ML integration enhances the discrimination capability
(Jomthanachai et al. 2021) among decision-making units (DMUSs), enabling more robust
efficiency evaluations. Recent studies (Kannan et al. 2024; Khoubrane et al. 2024) have further
demonstrated the effectiveness of hybrid DEA-ML models reinforcing the potential of these
integrated approaches to provide scalable, predictive, and interpretable efficiency evaluation
tools in educational and institutional settings.

These two research gaps (1) the subjectivity and lack of standardized guidelines for input-
output selection in DEA and (2) the limitations of traditional DEA in handling dynamic datasets
and predicting efficiency scores underscore the need for innovative approaches. Developing
integrated predictive models that combine DEA with advanced ML techniques offers a pathway
to address these challenges, streamlining efficiency evaluations while enhancing accuracy and
reliability in educational contexts.

3. Methodology

3.1. Research design

This research design aims to develop a comprehensive framework for predicting students'
academic achievement efficiency by integrating data envelopment analysis (DEA) and machine
learning (ML) approaches as presented in Figure 5. The data analysis is structured into two
main phases: first, efficiency scores are calculated using DEA with constant returns to scale
(CCR/CRS) and variable returns to scale (BCC/VRS) models, and second, predictive models
are developed using machine learning algorithms. By meeting its objectives, the study aims to
enhance the accuracy and reliability of efficiency assessments, offering meaningful insights to
improve educational outcomes. Key research objectives include evaluating the selection of
input and output variables for measuring students' academic achievement efficiency, optimizing
super-efficiency models within DEA to accurately identify the most efficient decision-making
units (DMUs), and developing predictive models for academic achievement efficiency scores
through the integration of DEA and ML approaches.

3.2. Population and sample

The target population for this study comprises all the final year diploma students who enroll in
diploma level Universiti Teknologi Mara. A total of 24,074 final year diploma student been
registered (Data Analytics and Statistics Unit, U'TM) in 15 campuses with various diploma
programs in UiTM all around Malaysia. These campuses and branches been divided into five
main regions. The Northern region had four main campuses. Central region had two campuses.
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East Cost region, Southern region and East region had 3 campuses,4 campuses and 2 campuses
respectively. Due to limited circumstances and time, this study decided to take a sample instead
of the whole population. Since it involves a very large geographical region, multistage cluster
sampling has been chosen for this study. The procedure involved in multistage cluster sampling
is not very different from that in random sampling.

3.3. Research instrument and data gathering

Building upon our earlier publication on instrument development (Ahmad et al. 2023), this
study utilizes the same validated tool, the Student’s Competency Questionnaire (SCQ), to
explore the integration of DEA and ML approaches. The SCQ consists of four parts: Part A
(student demographics), Part B (academic background), Part C (student competencies based on
Education 5.0@UiTM), and Part D (student satisfaction). The competencies in Part C are
measured using a 10-point Likert scale ranging from Not Competent at All to Very Competent,
providing greater granularity compared to the traditional 7-point scale. This choice aligns with
recommendations by Awang et al. (2016), who found 10-point scales more effective for
measurement models. Informed consent was obtained from all participants, and they were
assured of their right to withdraw at any point without consequence.

3.4. Decision making units and input and output selection

The selection of decision-making units (DMUs) is a crucial criterion in measuring relative
efficiency. In this study, DMUs are defined as individuals, specifically the final year diploma
students. A general rule of thumb, as stated by Raab and Lichty (2002) and Khezrimotlagh
(2015) suggests that the number of DMUs should be greater than or equal to three times the
sum of the inputs and outputs. Given that this study involves two inputs and five outputs, the
minimum number of DMUs required is (2+5)*3=21. With a total of 1,282 final year diploma
students initially considered, 183 samples were excluded due to incomplete information,
leaving 1,099 decision-making units (DMUs) for this study. This sample size is deemed more
than sufficient to proceed with the analysis. This study selected two inputs: student results
(CGPA) and student satisfaction, and five output: five types of competencies (Personal,
Adaptive, Digital, Century, and Social). The selection of these variables is based on the
university's efficiency in terms of developing students' competencies, with the aim of
identifying the skills students possess upon graduation and whether they correlate with their
academic achievements

Input variables involved the Student Result determined by Cumulative Grade Point Average
(CGPA). The CGPA is calculated by taking the weighted average of the grade points earned in
all completed courses, where the weight of each course is determined by its credit hours. Next
for the Satisfaction, it measure the level of contentment or satisfaction experienced by students
during the diploma study. 16 satisfaction items consisting the to measure overall final year
diploma student satisfaction during their studies. Meanwhile for output variables consisting five
outputs variables which are Personal, Adaptive, Digital, Century, and Social competencies.
Personal competency refers to the combination of skills, behaviors, and attitudes that enable an
individual to navigate their personal and professional lives effectively. In an educational
context, developing personal competency involves helping students cultivate a strong sense of
self, resilience, and the ability to manage their emotions and relationships. This study involved
nine item to measure final year diploma student with are self-control, trustworthy,
Conscientiousness, Adaptability, Innovativeness, Achievement drive, Commitment, Initiative,
Optimism.
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3.5. Student achievement efficiency based on different input and output selection

Four models have been developed based on different selection inputs and outputs. Figure 1
illustrates a structured approach to variable selection across different model variants, all
designed to evaluate how educational inputs (CGPA and satisfaction) can be optimized to
enhance various student competencies. The selection of specific groups of variables for each
model is based on thematic groupings that reflect distinct dimensions of student competencies.

The selection of input and output according to each
maodel

h 4 h 4 h 4 h 4

MODEL1 MODEL2 [ MODEL 3 ] [ MODEL 4 ]

E|  cera E|  ccma E| coma E| coma

Z | Satisfaction Z | Satisfaction z Satisfaction Z | Satisfaction

. Personal . Soci . _

5 Social = St =] Holistic 5 Personal

= =3 = Adaptive = Bgs = S

=] Adaptive & = & Digital B Digital

=] S = Digital = ) =] =
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o i, o Century o : = =
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Figure 1: Input and output selection framework for DEA models evaluating student efficiency

3.6. Development of an integrated DEA and ML predictive model
Phase 1: Data preparation and preprocessing

Data preprocessing is performed on the student achievement dataset. In this phase, two main
procedures have been conducted in order to produce an accurate result of efficiency score. The
first is outliers. This study identifies the present of outliers using Mahanalobis Distance
technique. A threshold of 18 for the Mahalanobis Distance was established as the cutoff for
identifying and omitting outliers from the dataset. This threshold is well-supported in the
literature, including studies by Barnett and Lewis (1994) and Leys et al. (2018), and is
commonly used in practice. Therefore, in this study, Mahalanobis Distance values greater than
18 were considered as outliers and were excluded from further analysis. While the second issue
was missing value. Dealing with self-reported data might face a missing value, ultimately will
lead to biased result, thus, to overcome this, descriptive statistics been used to identify the extent
and pattern of missingness, determining whether it is random or systematic. This approach,
supported by studies like Ochieng” Odhiambo (2020), helps maintain the dataset's size and
integrity while minimizing distribution distortion.

Phase 2: The development of DEA model

A radial model of CCR (CRS) and BCC (VRS) were used to measure the efficiency score. This
study preferred output orientation model since the major focus on enhancing students'
competencies (Adna et al. 2025; Toloo et al. 2021). The CCR Model (Charnes, Cooper, and
Rhodes) model assumes constant returns to scale, meaning that an increase in inputs will lead
to a proportional increase in outputs. By using the CRS model, the researchers could assess the
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overall efficiency of the programs, taking into account both technical and scale efficiency. In
this context of study, using CRS model, the efficiency of each student in transforming their
input (CGPA and Satisfaction) into output (personal competencies, adaptive competencies,
digital competencies, 21st century competencies, social competency). The BCC(VRS) and
CCR(CRS) model have been formulated as in Eq. (1) and Eq. (2) respectively.

Maximize 6,

subject to constraint:

z /Ix <x, )

> Y5 20,0
n 2/ — 1

j=177

4;20,V,

(M

Maximize 6,

subject to constraint:

Z ﬂ.x _x, v,) (2)

zj=1 AY,5 2 600Y 0,
A;x20,V,

where 6, is the efficiency score of the DMU being evaluated for both model (BCC and CCR);
X; is the input I for DMUj; V,; is the output » for DMUj; A ; 1s the intensity variable (weights)

=177y

associated with each DMU; z’ Ax, <x, (v 1s the value of the i-th input for the DMU under

evaluation, denoted by 0; z <0,Y,0(vis the multiplication from X; input and output

/ll

values; n is the number of DMUs (1099) and Zj‘:l A4, =1 is the convexity constraint which

allows for variable return to scale (referring to BCC model).

Phase 3: The development of integrated predictive model using DEA+ML approaches

In this phase, the study presents the design and implementation of a predictive model to estimate
efficiency scores using three machine learning approaches: conventional machine learning,
artifical neural network (ANN) and metaheuristic AutoML genetic programming based. The
conventional ML algorithm will serve as a baseline, utilizing traditional techniques such as
regression, decision trees, and gradient boosting. On the other hand, metaheuristic AutoML will
employ advanced optimization strategies to automatically select the best model and
hyperparameters, aiming to enhance prediction accuracy and computational efficiency. Before
proceed to develop the predictive model, certain keys of assumption need to be checked to
ensure that the model is valid, reliable and interpretable. Normality, linearity, homocedasticity
assumptions have been assessed. The normalized procedure also be done. Once all the
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assumptions have been identified, the next process is to develop the integrated predictive model
using DEA and ML approaches.

a) Developing an integrated predictive model using DEA and ML approach (conventional
ML regressor)

In developing predictive methods, selecting the appropriate ML algorithm is crucial to ensure
the model aligns with the nature of the dataset and the study's objectives. Two primary types of
ML algorithms are ML regressors and ML classifiers. The choice depends on whether the target
variable is continuous or categorical. ML regressors aim to predict continuous numeric values
based on input features, making them well-suited for datasets where the dependent variable can
take any real number within a specific range (Sagar et al. 2023; Zhang et al. 2022). Regressor
algorithms model the relationship between independent variables (features) and the continuous
dependent variable (target) to provide accurate predictions. In this study, the dependent variable
is the efficiency score, which is a continuous numeric value derived from DEA. Given this
characteristic, ML regressor algorithms were chosen to predict efficiency scores effectively.
The continuous nature of efficiency scores requires a regression approach to model the
relationship between predictors (e.g., student performance metrics) and the target variable,
ensuring precise and interpretable predictions. Common algorithm used by previous study was
in regression model which linear regression (Ghildiyal et al. 2024), polynomial regression
(Sagar et al. 2023) and multivariate regression (Zhang et al. 2019) and ridge regression and
LASSO (Petrelli 2023).

When choosing between parametric and non-parametric algorithms for regression, the
decision depends on the data's nature and the study's objectives. Parametric models assume a
specific form for the relationship between variables, making them computationally efficient and
easy to interpret. They work well when their assumptions hold but are limited in flexibility
(Taylan 2020; Yavuz & Sahin 2022). Non-parametric models, on the other hand, do not assume
a fixed functional form, allowing them to capture complex, nonlinear patterns in the data
(Laksaci et al. 2023). They are more adaptable, particularly for high-dimensional datasets, but
may require more computational resources. Given the continuous nature of the dependent
variable (DEA efficiency scores), regression models were more suitable than classifiers, which
are commonly found in earlier studies but are limited to categorical outcomes.

In this study, non-parametric regression approaches were prioritized due to their adaptability
to high-dimensional educational data and ability to model non-linear student performance
patterns. With a large sample size (n = 1099) and the goal of precise individual-level prediction,
algorithms such as K-nearest neighbors (KNN), decision tree, random forest, support vector
regression (SVR), and gradient boosting regressor (GBR) were employed for their robustness
and proven performance in similar domains.

b) Developing integrated predictive model using DEA and ML approach (artificial neural
network (ANN))

Artificial neural network (ANN) is composed of many artificial neurons that are linked together
according to specific network architecture. ANN provides a new way for feature extraction
using hidden layers and classification. Multilayer perceptron (MLP) is the most widely used
ANN technique for data classification due to its most robust and special type of neural network
(Isabona et al. 2022). Thus, in this study, we developed four models based on various activation
function. This variety of activation functions (refer Table 3) allows a comparative analysis of
how different non-linearities in the hidden layers impact the overall model performance. ANN
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was selected to model deeper and more abstract relationships, particularly where traditional
tree-based methods may fall short.

Table 3: The choice of activation function of four predictive models using DEA+ANN approach

Model Activation Activation Activation
function function function
(It hidden (2™ hidden (Output
layer)-10 layer)-8 layer)-1

1 ReLU ReLU Linear

2 Swish Swish Linear

3 Leaky gut Leaky gut Linear

4 elu elu Linear

¢) Developing an integrated predictive model using DEA+ML approach (AutoML via
genetic programming)

The integration of DEA with AutoML is a burgeoning area of research that aims to enhance the
efficiency, accuracy, and applicability of DEA models. An innovative approach that leverages
the principles of genetic algorithms to automate the process of model selection, feature
engineering, and hyperparameter tuning is via genetic programming (Raglio et al. 2020;
Schofield & Lensen 2021). The integration of genetic programming into AutoML frameworks
can enhance the efficiency and effectiveness of machine learning pipelines by automating
complex tasks and providing interpretable solutions. The process which in genetic
programming typically includes steps (Figure 3) such as initialization, selection, crossover,
mutation, and termination. These steps are iteratively applied to evolve programs that meet
predefined fitness criteria.

maximum number of
generations reached?
or solution found

Random l.lmm] Fitness evaluation
pepulation

Reproduction Selection
(crossover/mutation)

Figure 2: General flowchart for genetic programming

Reproduction process

On this study, initially, a DEA model is employed to calculate input-output efficiency
scores. All indicators for input and output variables are defined, and the efficiency score is used
as the target variable. Before integrated with AutoML via GP, the dataset undergoes
preprocessing, including normalization to ensure consistency in data values and assumption
verification earlier. At the beginning of the genetic programming process, a population of
individual pipelines is randomly generated. This population serves as the starting point for the
evolutionary process. The population size is defined as 1099, which represents the number of
individual pipelines that will evolve over the generations. From the current population, two
individuals are selected based on their fitness scores. The selection mechanism often favors
individuals with higher fitness scores, ensuring that better-performing models have a higher
likelihood of passing their characteristics to the next generation.
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The implementation method of GP machine learning is executed with Python Google Colab
platform. The AML TPOT machine learning model has been set to employ 70:30 percent ratio
between cross validation for all experiments. TPOT used cross validation for the machine
learning training approach and the number of default value for the training and validation
chunks is defined as 5. The number of iterations for the GP to set the final optimized pipelines
is determined by the number of generations in such that the algorithm should work better with
more generations. Since the computational resources constrain cannot handle longer time would
be required to complete with bigger number of generations therefore smaller number of
generations (5) been used to quickly evaluate the model’s general behavior. Population size is
the number of individuals or potential pipelines that can be stored in the GP selection pool.
Previous experiments by Masrom et al. (2020) found that the default population size 10 is fit
enough to the algorithm to produce best optimal result. However, since no rule of thumb for
determining population size, therefore this study decided to start population size of 10 as the
default population size. Six population sizes have been chosen in this experiment (10, 25, 50,
and 75, 100, 200) to obtain optimal accuracy.

Mutation rate is a small value used to control the GP exploration search by applying random
changes to some of the pipelines in the selection pool. The crossover furthermore is used to tell
the GP how many pipelines to reproduce at each of the generation. The value for both must be
in between 0.1 to 0.9 and not exceed 1.0. The mutation setting will be 0.7 and crossover rates
setting is 0.3. The selection of mutation and crossover rates in genetic programming is a critical
factor since these parameters determine how solutions evolve over generations, impacting
convergence speed and solution quality. Study by Masrom et al. (2020) and Hassanat et al.
(2019) found that higher crossover rates have been found to improve algorithm accuracy, while
lower rates may lead to premature convergence. Thus, this study chooses to conduct an
experiment with various mutation rates and crossover rate as stated in Table 4.

Table 4. The Important Parameters in AutoML via GP

Parameters Configuration value
Generation 5

Population_size 10,25,50,75,100,200
Mutation rate 0.1,0.2,0.3,0.5,0.9,0.8,0.7
Crossover rate 0.1,0.2,0.3,0.5,0.9,0.8,0.7

Every experiment method in Figure 3 was repeated with data split 0.3 and each split ratio is
repeated with six population sizes (10, 25, 50, 75, 100, and 200) and 3 validations from the 3
GP generations. Thus, the total experiment run was (7 mutation rates X 7 crossover rate X 6
population size X 1 split ratio (0.3) equal to 294. For each experimental run, three validations
from five GP generations in total of 1470 (total experiment runs X GP generation).

The total row of the student achievement efficiency dataset is 1109, which is divided into
training and testing set as depicted in Figure 3. If the split ratio is 0.7, 776 out of 1109 were
deployed for training set and the rest of 332 data left for testing. For validation, TPOT used
cross-validation to divide the training dataset into training and validation set according to the
number of k-folds. This research used 5 k-folds. New individuals with the highest predictive
value are added to the population after each generation. This process continues until the
population size limit is reached (i.e., the number of individuals equals the predefined limit) or
the maximum number of generations (j = max) is achieved. Once the genetic programming
process reaches the specified stopping criteria, the best-performing pipelines are selected based
on their fitness scores and these selected pipelines are then applied to the test dataset to evaluate
their predictive accuracy and performance.
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Dataset of Student Achievement Efficiency
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Repeated 12 times (3 split ratio*4 population size)
Figure 3. The experimental methodology on GP

Phase 4: Model validation

When evaluating the performance of predictive models, especially in regression tasks, it's
crucial to quantify the model's accuracy and reliability. Commonly used metrics include Mean
Squared Error (MSE), Root Mean Squared Error (RMSE), Mean Absolute Error (MAE), and
the Coefficient of Determination (R?). Each of these metrics provides different insights into the
model's performance and understanding them comprehensively is essential for interpreting
results accurately.

Phase 5: Identifying most importance features of integrated predictive model using
permutation test

This study employs a comprehensive methodology to identify the most significant features
influencing student achievement efficiency. The approach integrates permutation tests and
SHAP (SHapley Additive exPlanations) analysis to evaluate feature importance across the best
predictive models selected from three ML approaches: conventional ML algorithms, ANN, and
AutoML via genetic programming. By combining permutation tests and SHAP, the study
ensures a robust assessment of feature significance, enhancing the interpretability of predictive
models and the understanding of the factors driving student efficiency. It consists of two main
phases: First phases Conducting Permutation Test involves procedures such as (1) Baseline
performance measurement, (2) feature vale shuffling, (3) performance evaluation post shuffling
and(4)ranking feature importance. While Phase 2 SHAP analysis involved (1) Computing
SHAP values and (2) Generating SHAP summary plots.

A larger increase in the error metric (MSE) after shuffling a feature indicates a more
significant contribution to the model's predictive power. The permutation test results provide
an initial ranking of features based on their importance. This methodology ensures a thorough
analysis of feature importance for predicting student achievement efficiency, combining
permutation tests for assessing model reliance on each feature and SHAP for explaining feature
contributions. This dual approach not only enhances interpretability but also supports data-
driven educational strategies.
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Phase 6: Comparison on Efficiency score between traditional DEA model and Integrated
Predictive models

Once the best predictive model is identified based on the three approaches (Conventional ML,
ANN, and AutoML via genetic programming), the next step involves comparing the predicted
efficiency scores from this optimal model with the original efficiency scores obtained from the
traditional DEA model. This comparison aims to evaluate the effectiveness of integrating ML
with DEA in enhancing the prediction accuracy and discriminative power for assessing student
achievement efficiency. This study evaluated the best model based on performance metrics
such as Root Mean Squared Error (RMSE), Mean Absolute Error (MAE), R-squared (R?), and
Spearman’s rank correlation coefficient (rho), the most accurate model from the three
approaches is selected as the best predictive model. A descriptive statistical analysis to evaluate
key measures such as mean, standard deviation, median, maximum, minimum values, and the
number of efficient units identified by each approach and will highlight any differences in the
distribution of efficiency scores, showing whether the integrated DEA+ML approach provides
a more refined or accurate assessment. Spearman Rank Correlation Coefficient used to
determine whether the differences between the original DEA efficiency scores and the predicted
scores from the best predictive model are significant. Next, the discriminatory power been
assessed using Evaluate the number of efficient units (i.e., DMUs with efficiency scores equal
to or greater than 1.0) identified by both approaches. The integrated model may be able to better
differentiate between efficient and inefficient units, reducing the number of units with perfect
efficiency scores and thus improving the model's discriminative ability. The best integrated
predictive model using DEA +ML approaches has been identified based on these comparison
tests. Overall, the process of developing integrated DEA+ML approaches to predict efficiency
scores has been compiled into Figure 4.

4. Results

4.1. Summary statistics on input and output variables

The main drawback ohas beenA were its sensitivity to outliers (Dharmapala 2021) and missing
values (Chen et al. 2020). Especially when using real-life data, outliers are common and
decrease the precision of the DEA. To address this issue, comprehensive outlier detection and
handling procedure was implemented. To ensure the accuracy and reliability of the DEA model,
an outlier detection procedure was implemented using Mahalanobis Distance. This method
identifies multivariate outliers by measuring the distance between a point and the center of the
dataset (Rajamani & lyer 2023; Sari et al. 2021). A cutting point of Mahalanobis Distance
greater than or equal to 18 was established as the threshold for omitting outliers from the
dataset. Addressing missing values is crucial because they can lead to biased or invalid results,
significantly distorting statistical analyses and model predictions. The missing value analysis
revealed some gaps in the data collection process, necessitating the exclusion of certain records.
The decision to exclude these records was based on the extent and pattern of missing data,
aiming to minimize any potential biases or distortions. Consequently, data points exceeding
this threshold were removed, resulting in a cleaned dataset comprising 1099 observations. This
sample size is sufficient, as it exceeds the calculated required sample size of 1075 as shown in
Table 5. This cleaned dataset ensures a more robust and accurate DEA analysis by mitigating
the effects of outliers and addressing the issue of missing data comprehensively. This
comprehensive approach ensures that the DEA model's results are accurate and reflective of the
true performance of the decision-making units (DMUs), providing valuable insights for
improving educational efficiency.
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Table 5 Descriptive findings on input and output variables

Hyperparameter

Variables Mean SD Minimum Maximum

Variable Input:

CGPA 3.39 0.34 2.06 4.00
Satisfaction 7.99 1.22 1.00 10.00
Variable Output:

Personal 8.16 1.16 3.89 10.00
Adaptive 8.21 1.20 4.00 10.00
Digital 8.30 1.22 4.00 10.00
21% Century 8.01 1.33 3.40 10.00
Social 8.23 1.24 4.00 10.00
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4.2. Interrelationship between input and output variables

The correlation matrix presented in Figure 5 shows the relationships between various input and
output variables in the study, including CGPA, Satisfaction, Personal Competencies, Adaptive
Competencies, Digital Competencies, Social Competencies, and 21st Century Competencies.
The values in the matrix represent the Spearman correlation coefficients, which range from -1
to 1. Positive values indicate a positive correlation, while negative values indicate a negative
correlation. The strength of the correlation is indicated by the color intensity, with deeper red
colors representing stronger positive correlations and deeper blue colors representing weaker
or negative correlations.

Correlation Matrix of Input and Output Selection

-0.7

-06

ADAPTIVE PERSONAL SATISFACTION  CGPA

-0.5

Correlation Coefficient

-04

SOCIAL DIGITAL

CENTURY

|
CGPA  SATISFACTION PERSONAL  ADAPTIVE DIGITAL SOCIAL CENTURY

Figure 5: Correlation analysis for input and output selection

The correlation analysis shows that CGPA has low correlations with other variables (ranging
from 0.10 to 0.29), indicating its independence from satisfaction and competencies. Satisfaction
is moderately correlated with all competencies (r = 0.62-0.67), suggesting that higher
satisfaction is linked to higher competency levels. Strong interrelationships exist among
competencies, with Personal, Adaptive, Digital, Social, and 21st Century Competencies all
highly correlated (r = 0.81-0.90). These findings validate the selection of input and output
variables in the DEA model, as strong correlations enhance the model’s ability to assess
efficiency accurately (Naseri et al. 2020; Dobos & Vordsmarty 2024). The results confirm that
student competencies are interdependent, reinforcing the importance of a holistic approach in
efficiency analysis. Given the high interrelationships observed among input and output
variables in our study, these input and output selections are thus validated.

4.3. Identifying the optimal student achievement efficiency

Table 6 presents the efficiency results of four data envelopment analysis (DEA) models, using
both the CCR (Charnes, Cooper, and Rhodes) and BCC (Banker, Charnes, and Cooper)
approaches. The data includes minimum and maximum efficiency scores, the range, mean,
standard deviation, and the number of efficient decision-making units (DMUs) for each model.
For the CCR model, the minimum efficiency scores range from 0.4581 (Model 4) to 0.4673
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(Model 1), with the maximum efficiency score consistently at 1.0000 across all models. The
range of efficiency scores varies slightly, from 0.5333 in Model 1 to 0.5419 in Model 4. The
mean efficiency scores show a slight decline from Model 1 (M =0.7832, SD =0.0836) to Model
3 (M =0.7636, SD = 0.0854), with Model 4 at M = 0.7719 (SD = 0.0865). The number of
efficient DMUs in the CCR model decreases from 17 in Model 1 to 13 in Model 3, with Model
4 having 15 efficient DMUs.

In contrast, the BCC model shows higher minimum efficiency scores, ranging from 0.4818
(Model 4) to 0.5060 (Model 1). The maximum efficiency score remains at 1.0000 for all
models. The range of efficiency scores varies from 0.4940 in Model 1 to 0.5182 in Model 4.
The mean efficiency scores are higher than those in the CCR model, ranging from 0.8654 in
Model 3 (SD=0.1024) to 0.8820 in Model 1 (SD =0.0959). The standard deviations are slightly
higher than those in the CCR model, indicating more variability, with values ranging from
0.0959 to 0.1024. The number of efficient DMUs in the BCC model is significantly higher,
decreasing from 134 in Model 1 to 110 in Model 3, with Model 4 having 113 efficient DMus.
Overall, the BCC model consistently shows higher mean efficiency scores and a greater number
of efficient DMUs compared to the CCR model. This difference highlights the BCC model's
ability to account for variable returns to scale, providing a more nuanced and often more
favorable efficiency assessment. The variability in efficiency scores, as indicated by the
standard deviations, suggests that the BCC model captures a broader range of efficiency levels
among DMUs.

Table 6. Summary statistics for proposed CCR and BCC model

Item CCR Model Efficiency BCC Model Efficiency

Model Model Model Model Model Model Model Model
1 2 3 4 1 2 3 4
Minimum | 0.4673  0.4612  0.4595 0.4581 | 0.5060 0.5033  0.5022  0.4818

Maximum | 1.0000  1.0000  1.0000  1.0000 | 1.0000  1.0000  1.0000  1.0000

Range 0.5333  0.5388  0.5405 0.5419 | 0.4940 0.4967 0.4978  0.5182
Mean 0.7832 0.7736  0.7636  0.7719 | 0.8820 0.8738 0.8654  0.8703
Std'.. 0.0836  0.0841 0.0854  0.0865 | 0.0959  0.0988  0.1024  0.1012
deviation

Number

of

efficient 17 16 13 15 134 121 110 113
DMUs

Furthermore, this analysis compares the discriminatory capabilities of the Banker, Charnes,
and Cooper (BCC) model and the Charnes, Cooper, and Rhodes (CCR) model in evaluating the
efficiency of decision-making units (DMUs). The BCC model exhibits superior discriminatory
power, as evidenced by its ability to recognize a larger number of efficient units and a greater
standard deviation in efficiency scores. This suggests that the BCC model excels at
differentiating DMUs based on their operational scales and efficiency characteristics, which is
essential for nuanced analysis and effective policy making. In contrast, the CCR model
demonstrates moderate discriminatory power. It effectively distinguishes between fully
efficient units and others to a certain extent; however, its lower standard deviation and fewer
identified efficient units imply a reduced sensitivity to variations among DMUSs, especially
those not operating at optimal scales. This characteristic suggests that the CCR model may not
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capture the full range of operational efficiencies in environments where variable returns to scale
are significant.

The enhanced discriminatory power of the BCC model makes it particularly suitable for
detailed efficiency analyses. By identifying a broader range of efficient units, the BCC model
facilitates the discovery of best practices and supports benchmarking efforts, thus fostering
operational improvements across units. The application of the BCC model in academic research
enhances the credibility and relevance of findings Dellnitz et al. (2018), as demonstrated in
Table 4.13. The model's thorough approach to assessing efficiency under variable returns to
scale, as highlighted by Dellnitz & Rodder (2020), ensures that the research conclusions are
robust, practical, and accurately represent the operational dynamics at play. This is crucial for
studies that aim to influence policy or organizational strategies. The selection of the BCC model
for this study is based on its proven ability to handle variable operational conditions and its
exceptional capacity to differentiate performance among DMUs. By accurately identifying the
sources of inefficiencies whether they stem from underutilization of resources or diminishing
returns the BCC model supports more targeted recommendations for improving student
performance, aligning closely with educational strategies that emphasize personalized and
competency-based learning approaches. Sun (2017) supported that in educational context,
different models such as the exam review model and talent cultivation model highlight various
aspects of learning efficiency. Therefore, the BCC model's flexibility, its ability to capture
variable returns to scale, and its demonstrated effectiveness in complex settings make it a highly
appropriate and theoretically robust tool for evaluating student academic achievement. Since
Model 1 under BCC model identifies the largest number of efficient DMUs (134) and may
offers the broadest insight into students efficiency based on the chosen input and output
relationship, thus this study decided to choose as the best model since it comprehensively
assesses efficiency and identify subtle performance differences among students.

4.4. Integrated prediction model using DEA and ML approaches

4.4.1. DEA and ML approaches (conventional approach)

The dataset exhibited deviations from normality, heteroscedasticity, and linearity, requiring
adjustments such as robust standard errors and nonparametric methods. After evaluating
multiple regressor, gradient boosting regressor (GBR) demonstrated the best generalization
with minimal overfitting, followed by random forest as a reliable alternative. KNN and decision
tree faced overfitting issues, while SVR improved after hyperparameter tuning, as shown in the
performance summary Table 7.

4.4.2. DEA with ML (artificial neural network approach)

The comparative analysis of multi-layer perceptron artificial neural networks (MLP-ANN)
using different activation functions revealed that activation choice significantly impacts model
performance. Model 1 (ReLU) showed moderate generalization with a test RMSE of 0.0450
and R? of 0.7687. Model 2 (Swish) improved generalization, achieving a lower test RMSE of
0.0391 and R? of 0.8249. Model 3 (Leaky ReLU) performed best in training (RMSE = 0.0336,
R2 = 0.8779) but had slightly lower test accuracy (RMSE = 0.0404, R? = 0.8130). Model 4
(ELU) demonstrated the most balanced performance, achieving the lowest test RMSE (0.0370)
and highest R? (0.8434), indicating superior generalization. These results suggest that ELU
activation provides smoother convergence and enhanced learning, making it ideal for
educational datasets that require robust handling of noise (Cococcioni et al. 2020; Maurya et
al. 2023).
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Table 7. The findings of regression model performance (DEA + conventional ML approach)

Regressor Hyperparameter Data Split MSE RMSE MAE
Tuning

KNN Cross Validation Train 0.0007 0.0279 0.0166
Test 0.0014 0.0382 0.0232

GridSearch Train 0.0000 0.0000 0.0000

Test 0.0008 0.0292 0.0177

Decision Tree Cross Validation Train 0.0000 0.0000 0.0000
Test 0.0008 0.0289 0.0129

GridSearch Train 0.0001 0.0102 0.0049

Test 0.0008 0.0286 0.0145

Random Forest Cross Validation Train 0.00008 0.0091 0.0036
Test 0.0006 0.0247 0.0115

GridSearch Train 0.00008 0.0091 0.0036

Test 0.0006 0.0247 0.0115

SVR Cross Validation Train 0.0022 0.0474 0.0349
Test 0.0028 0.0532 0.0368

GridSearch Train 0.00005 0.0077 0.0069

Test 0.0002 0.0166 0.0110

GBR Cross Validation Train 0.0000 0.0021 0.0014
Test 0.0003 0.0181 0.0094

GridSearch Train 0.0000 0.0035 0.0026

Test 0.0002 0.0158 0.0099

Figure 6 describes the architecture and performance of the best MLP-ANN model using
backpropagation. This model consists of an input layer with 7 neurons, two hidden layers, and
an output layer with 1 neuron. The first hidden layer contains 40 neurons, and the second hidden
layer contains 38 neurons. The activation function used for both hidden layers is the
Exponential Linear Unit (ELU), while the output layer uses a linear activation function. Based
on the Model Architecture this MLP-ANN model consists of 7 neurons (corresponding to the
seven input features for input Layer, two hidden layers where the first hidden input layer
consists of 40 neurons with ELU activation function while second hidden layer consists of 38
neurons with ELU activation function. The output Layer consists of 1 neuron with linear
activation function which is found suitable for regression tasks. Throughout the experiment
task, activation function, ELU (Exponential Linear Unit) used in the hidden layers to introduce
non-linearity, helping the model learn complex patterns while avoiding issues like vanishing
gradients meanwhile Linear activation function used in the output layer to predict continuous
values, which is appropriate for regression problems.

Table 8. Comparison of MLP ANN with different activation functions

Model Activation Activation Activation Performance Train dataset  Performance Test dataset

function function function

(1% hidden (2" hidden  (Output

layer)-10 layer)-8 layer)-1

RMSE MAE R? RMSE MAE R?

1 RelLU ReLU Linear 0.037 0.025 0.862 0.045 0.028 0.769
2 Swish Swish Linear 0.037 0.026 0.851 0.039 0.026 0.824
3 Leaky gut Leaky gut Linear 0.033  0.023  0.878 0.040  0.025 0.813
4 elu elu Linear 0.032 0.023 0.889 0.037  0.024 0.843
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Figure 6: DEA-MLP network

4.4.3. DEA and ML (AutoML via genetic programming approach)

As a summary presented in Table 9, Model DEA+XGB1, the ARMSE is 0.0137 and AMAE is
0.0073, indicating a slight increase in error from training to testing, but overall, the model
retains an extremely high R? value of 0.9995, showing excellent predictive performance.
However, Model DEA+XGB2, the ARMSE is 0.0116 and AMAE is 0.0058, with a slightly
higher test error compared to training, but the R? value of 0.9559 still indicates strong predictive
power, albeit with slightly more variability in the test set. This suggests that both configurations
perform exceptionally well, but the Model DEA+XGB1 achieves a higher level of precision
and minimal error across training and testing datasets.

Table 10 compares efficiency scores across DEA integrated with ML models: random forest
(DEA-RF), gradient boosting regressor (DEA-GBR), artificial neural networks (DEA-ANN),
and AutoML (genetic programming) (DEA-AutoML (GP)). DEA-GBR (0.8808) and DEA-
AutoML (GP) (0.8799) have the closest mean efficiency to the original DEA, while DEA-RF
(0.8786) and DEA-ANN (0.8781) are slightly lower. Standard deviation is smallest for DEA-
RF (0.0936), indicating less variability, while DEA-GBR (0.0957) and DEA-AutoML (GP)
(0.0950) closely resemble DEA. Median efficiency is highest for DEA-AutoML (GP) (0.9002),
followed by DEA-GBR (0.9001). Overall, DEA-GBR and DEA-AutoML (GP) best align with
DEA in efficiency distribution, while DEA-RF is more conservative with lower variability.
DEA-ANN offers more flexibility but predicts moderate efficiency. DEA-GBR and DEA-
AutoML (GP) are the most reliable in replicating DEA results, while DEA-RF provides a stable
alternative.

Table 9. DEA+XGB regressor performance result

Model Best Pipelines RMSE MAE R’

1 XGBRegressor(learning_rate=0.1, max_depth=8, min_child weight=2, 0.0182 0.0087 0.9622
n_estimators=100)

2 XGBRegressor(learning_rate=0.1, max_depth=7, min_child weight=2) 0.0186 0.0110 0.9605
3 XGBRegressor(learning_rate=0.1, max_depth=6, min_child_weight=4) 0.0185 0.0103 0.9606
4 XGBRegressor(learning_rate=0.1, max_depth=6, min_child_weight=6) 0.0202 0.0107 0.9536
5 XGBRegressor(XGBRegressor(learning_rate=0.1, max_depth=7, 0.0188 0.0112 0.9596
min_child weight=2, n_estimators=100, n_jobs=1,
objective=reg:squarederror, subsample=0.3, verbosity=0),

learning_rate=0.5, max_depth=8, min_child weight=14,)
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Table 10: Descriptive summaries of four integrated predictive DEA+ ML models

Descriptive DEA DEA-RF DEA-GBR DEA-ANN DEA-GP
Mean 0.8820 0.8786 0.8808 0.8781 0.8807
Std.deviation 0.0959 0.0936 0.0957 0.0956 0.0950
Median 0.9000 0.9000 0.9001 0.8989 0.9002
Maximum 1.0000 1.0000 1.0200 1.0484 1.0093
Minimum 0.5060 0.5368 0.5081 0.5113 0.5177
No of efficient 134 47 44 74 50

Further statistical analysis has been conducted on testing datasets and found that Table 11
revealed the result on performance metrices on predicted models. DEA GBR consistently
outperforms the other models, achieving the lowest RMSE (0.0101) and MAE (0.0039), which
indicates it provides the most accurate predictions. Additionally, it has the highest R? (0.9889)
and Spearman’s rho (0.995), meaning it explains the most variance in the data and ranks the
efficiency scores most accurately. DEA_RF also performs well, with strong R? (0.9736) and
Spearman’s rho (0.987), but it has slightly higher RMSE and MAE compared to DEA GBR,
indicating somewhat less accurate predictions. DEA GP (XGB) demonstrates good
performance, with an R? 0f 0.9622 and a high Spearman’s rho (0.995), but it has a higher RMSE
(0.0182) and MAE (0.0087) than DEA_GBR. DEA ANN, however, performs the worst among
the models, with the highest RMSE (0.0242) and MAE (0.0158), and the lowest R? (0.9361),
making its predictions less reliable compared to the other models.

Table 11. Common statistical parameters of four DEA-ML algorithms for testing datasets

Model RMSE MAE R? Spearman’s rho
DEA RF 0.0156 0.0060 0.9736 0.987**
DEA GBR 0.0101 0.0039 0.9889 0.995**
DEA ANN 0.0242 0.0158 0.9361 0.969**
DEA GP(XGB) 0.0182 0.0087 0.9622 0.995%*

DEA_GBR emerges as the best-performing model, excelling in predictive accuracy with the
lowest RMSE and MAE, the highest R? and Spearman’s rho, and its ability to maintain a
distribution of efficiency scores similar to the original DEA model. DEA RF is also a strong
contender, offering reliable predictions with minimal variability, though it is more conservative
in identifying efficient DMUs. DEA GP (XGB) is a close alternative to DEA _GBR but has
slightly higher error rates. In contrast, DEA ANN, while allowing for the greatest over-
efficiency, performs the worst in terms of prediction accuracy and consistency. Based on both
the descriptive statistics and performance metrics, DEA GBR is the best overall model,
followed by DEA RF and DEA_GP (XGB), with DEA ANN being the least favorable due to
its higher error rates and lower predictive accuracy. This result consistent with findings by
(Burnaev & Boldyreva 2024; Langenberger et al. 2023; Sukiasyan 2023) that gradient boosting
regressor (GBR) and random forest (RF), have shown significant effectiveness in predicting
efficiency scores across various domains such as healthcare, education, and manufacturing.
These models are valued for their ability to handle complex datasets and provide accurate
predictions, making them suitable for diverse applications.

Not only that, the involvement genetic programming approach in this study shows promise
in improving prediction accuracy due to its performance in this study. GP has been shown to
effectively balance the trade-off between interpretability and accuracy in predictive modeling.
The combination of DEA and GP has been particularly effective. These have been proven by
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Panigrahi et al. (2018) produced a DEA-based evolutionary computation model for stock
market forecasting, demonstrating better performance by efficiently selecting input variables,
leading to improved prediction accuracy.

5. Discussion

This study compared four integrated DEA-ML models (DEA-RF, DEA-GBR, DEA-ANN, and
DEA-GP) using descriptive statistics and performance metrics (Table 5X). Among them, DEA-
GBR demonstrated the highest median efficiency score (0.9001) and slightly higher mean
efficiency (0.8808), making it the best-performing model, followed by DEA-RF and DEA-GP.
DEA-GP exhibited stable efficiency predictions with a narrower range, while DEA-ANN had
the highest variability, aligning with Zhang et al. (2019), who noted that ANN models can
produce outlier predictions when not optimally tuned. The integration of ML significantly
enhanced DEA's discriminatory power, reducing the number of efficient DMUs from 134 (BCC
model) to 47 (DEA-RF), 44 (DEA-GBR), 74 (DEA-ANN), and 50 (DEA-GP), supporting
findings from (Kordrostami & Mirmousavi 2013; Lam 2018; Pendharkar 2013; Peyrache &
Silva 2024) on the role of ML in refining DEA assessments.

Gradient boosting regressor (GBR) and random forest (RF) outperformed other models in
predictive accuracy, consistent with Burnaev and Boldyreva (2024), Langenberger et al. (2023),
and Sukiasyan (2023), who highlighted their effectiveness across healthcare, education, and
manufacturing domains. Genetic programming (GP) also showed promise in balancing
accuracy and interpretability, aligning with Panigrahi et al. (2018), who demonstrated the
potential of DEA-based evolutionary computation for improved prediction accuracy. Feature
importance analysis using SHAP (refer Table 12) revealed that Digital Competency was the
strongest predictor across all models, aligning with UiTM’s digital transformation vision as
emphasized by Md Zain (2020). Social Competency ranked second in most models,
highlighting its role in student efficiency, while Adaptive Competency was moderately
important. CGPA and Satisfaction had limited predictive impact, ranking lower across models,
and 21st Century Competency was consistently the least influential. These findings suggest that
non-academic factors particularly digital and social skills play a crucial role in shaping
academic efficiency. This underscores the importance of investing in digital infrastructure,
competency-based curriculum design, and adaptive learning strategies to enhance student
outcomes. Overall, the integration of ML techniques with DEA provides a robust, interpretable,
and scalable framework for evaluating individual student performance and informing
institutional policy and academic decision-making.

Table 12 Variable importance based on DEA+ML model

Variable DEA-RF DEA-GBR DEA-ANN DEA-GP
CGPA 6 6 5 6
Satisfaction 5 5 2 5
Personal 3 3 6 4
Adaptive 4 4 3 3
21% Century 7 7 7 7
Digital 1 1 1 1
Social 2 2 4 2

6. Conclusion

This study aimed to develop and validate a DEA model for assessing the academic achievement
efficiency of final-year diploma students and to enhance predictive accuracy by integrating
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DEA with ML techniques. The Student Competencies Questionnaire (SCQ), guided by Pillar 1
of the Education 5.0 Framework, was developed and validated to ensure reliable data collection.
Among the four DEA models analyzed, BCC Model 1 emerged as the most effective for
evaluating student efficiency. To further enhance the model’s predictive power, DEA was
integrated with ML approaches, including random forest, gradient boosting, ANN, and GP,
leading to a significant reduction in the number of efficient decision-making units (DMUs)
from 134 (using DEA alone) to 47 (DEA-RF), 44 (DEA-GBR), 74 (DEA-ANN), and 50 (DEA-
GP). This integration improved the discriminatory power of efficiency assessments, offering a
more refined evaluation of student performance.

Despite the promising outcomes of this study, several limitations merit careful
consideration. First, the dataset was confined to final-year diploma students within a specific
academic setting, which may limit the generalizability of the findings to broader and more
diverse student populations. Second, although the integration of DEA with machine learning
significantly improved the discriminatory power of efficiency assessments, it introduced
substantial computational demands particularly with the GP approach which posed challenges
related to processing time and resource optimization. Third, while the selection of input
variables (CGPA and satisfaction) and output variables (student competencies) was
theoretically justified, it may not fully encapsulate the complex and multidimensional nature of
academic achievement at the individual student level, which was the central focus of this study.
In contrast to traditional DEA applications that assess institutional or organizational units, this
research evaluated each student as a distinct decision-making unit (DMU), thereby introducing
additional complexity arising from personal learning trajectories, motivation levels, and
behavioral variability. Moreover, the use of self-reported data through the Student
Competencies Questionnaire (SCQ), despite undergoing thorough validation procedures, may
be subject to response bias and subjective interpretation. To address these limitations, future
research should incorporate more diverse and objective indicators, such as continuous
assessment marks and data from student entrance and exit surveys, to better capture longitudinal
learning outcomes and competency development. Expanding the dataset to include multiple
institutions and academic programs, along with the deployment of more advanced
computational infrastructures, would further enhance the validity, scalability, and
generalizability of the proposed DEA-ML framework for assessing academic efficiency at the
individual level.
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