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ABSTRACT  

The integration of data envelopment analysis (DEA) with machine learning (ML) offers a novel 

approach to evaluating academic efficiency beyond traditional measures like CGPA. This study 

develops an efficiency assessment framework combining DEA and ML to predict student 

academic achievement efficiency. The objectives are (1) to identify and validate input and 

output variables for DEA-based academic efficiency measurement and (2) to develop an 

integrated predictive model using DEA and ML for improved accuracy. A cross-sectional study 

was conducted on 1,099 final-year diploma students, collecting data on CGPA, satisfaction, and 

five competency domains (personal, adaptive, digital, social, and 21st-century skills). Efficiency 

scores were computed using the BCC and CCR DEA models, followed by ML predictions using 

random forest (RF), gradient boosting regressor (GBR), artificial neural networks (ANN), and 

AutoML via genetic programming. Performance was evaluated using RMSE, MAE, and R² 

metrics. The findings indicate that the DEA-GBR model achieved the highest predictive 

accuracy (RMSE = 0.0101, MAE = 0.0039, R² = 0.9889), outperforming other models. SHAP 

analysis identified digital competency as the most influential predictor, aligning with UiTM’s 

digital transformation goals. The integration of DEA with ML significantly improved 

discriminatory power, reducing the number of efficient decision-making units (DMUs) from 

134 to as low as 44. This study enhances academic efficiency assessment by integrating DEA 

with predictive ML models, providing a data-driven approach for student performance 

evaluation. Future research should expand datasets and explore additional ML techniques for 

further refinement. 
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ABSTRAK  

Integrasi analisis penyampulan data (DEA) dengan pembelajaran mesin (ML) menawarkan 

pendekatan baru untuk menilai kecekapan akademik melangkaui ukuran tradisional seperti 

CGPA. Kajian ini membangunkan rangka kerja penilaian kecekapan yang menggabungkan 

DEA dan ML untuk meramal kecekapan pencapaian akademik pelajar. Justeru itu, objektif 

kajian ini adalah (1) untuk mengenal pasti dan mengesahkan pembolehubah input dan output 

untuk pengukuran kecekapan akademik berasaskan DEA dan (2) untuk membangunkan model 

ramalan bersepadu menggunakan DEA dan ML untuk ketepatan yang lebih baik. Kajian keratan 

rentas telah dijalankan ke atas 1,099 pelajar diploma tahun akhir, mengumpul data mengenai 

CGPA, kepuasan, dan lima domain kompetensi (peribadi, penyesuaian, digital, sosial, dan 

kemahiran abad ke-21). Markah kecekapan dikira menggunakan model BCC dan CCR DEA, 

diikuti dengan ramalan ML menggunakan hutan rawak (RF), regresor penggalak kecerunan 

(GBR), rangkaian neural buatan (ANN) dan AutoML melalui pengaturcaraan genetik. Prestasi 

dinilai menggunakan metrik RMSE, MAE dan R². Dapatan menunjukkan bahawa model DEA-

GBR mencapai ketepatan ramalan tertinggi (RMSE = 0.0101, MAE = 0.0039, R² = 0.9889), 

mengatasi prestasi model lain. Analisis SHAP mengenal pasti kompetensi digital sebagai 

peramal yang paling berpengaruh, sejajar dengan matlamat transformasi digital UiTM. 

Penyepaduan DEA dengan ML telah meningkatkan kuasa diskriminasi dengan ketara, 

mengurangkan bilangan unit membuat keputusan (DMU) yang cekap daripada 134 kepada 
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serendah 44. Kajian ini meningkatkan penilaian kecekapan akademik dengan menyepadukan 

DEA dengan model ML ramalan, menyediakan pendekatan dipacu data untuk penilaian prestasi 

pelajar. Penyelidikan masa depan harus mengembangkan set data dan meneroka teknik ML 

tambahan untuk pemurnian selanjutnya. 

Kata kunci: analisis penyampulan data; pembelajaran mesin; kecemerlangan pelajar  

                       

1. Introduction 

The increasing demand for evidence-based approaches in education has spurred interest in 

methods that can evaluate and enhance academic achievement. Academic achievement 

traditionally encompasses the knowledge, skills, and behaviors that students acquire in 

educational settings, often measured by quantifiable outcomes like Cumulative Grade 

Performance Average (CGPA). Historically, higher education success was primarily gauged 

through final exam performances; however, this measure is increasingly seen as inadequate for 

capturing the full spectrum of student competencies. Modern educational discourse now 

advocates for integrating broader competencies such as critical thinking, creativity, problem-

solving abilities, and emotional intelligence into evaluations, recognizing these skills as 

essential for real-world readiness (Camanho et al. 2021; Yavuzalp & Bahcivan 2021). 

However, traditional techniques often fail to provide accurate or actionable insights into 

efficiency due to their inability to account for complex, multidimensional data. The integration 

of these competencies into academic assessments is vital for developing well-rounded 

individuals who can meet contemporary employers' expectations. By understanding graduates' 

comprehensive capabilities, such as problem-solving skills and adaptability, educators and 

administrators can tailor educational resources and support to better align academic outcomes 

with job market demands. This holistic evaluation approach ensures that higher education not 

only enhances the quality of its graduates but also prepares them effectively to meet 

professional challenges and fulfill employer expectations (Behle 2020; Datnow et al. 2022). 

Forming a good academic achievement holistically means there is a need to evaluate all the 

resources that have been provided to the student and how well the student utilized it. Therefore, 

it involves a very complex measurement. Dealing with this issue, the non-parametric method 

(data envelopment analysis) has a better dispersion of results than the parametric method in 

measuring efficiency (Farantos 2015). Data envelopment analysis has been broadly used to 

evaluate efficiency in many areas such as financial institutions (de Abreu & Kimura 2020; 

Ebrahimi & Hajizadeh 2021; Tsolas et al. 2020), farming (Nandy & Singh 2021), hospitals 

(Cinaroglu 2021; Misiunas et al. 2016), airlines (Alcaraz et al. 2021; Özsoy & Örkcü 2021), 

and government agencies (Zhang & Shi 2019). Even though several research works have 

provided insights into the richness of DEA applications, many aspects of efficiency still need 

to be explored. Particularly in education field, previous literature measures achievement 

efficiency lacking in determining academic achievement. Most studies related to application of 

DEA in education field were to measure the performance of in the schools (Camanho et al. 

2021; Esteve et al. 2020) and universities (Zhang & Shi 2019). It is due to the changes in the 

education landscape measuring student academic achievement will help higher institution 

management and educators evaluate the resources provided to students during their learning 

process and, in turn, can improve the quality of academic achievement.  

DEA not only assesses the efficiency of educational entities by determining how effectively 

individuals or institutions utilize their inputs to produce outputs, but it also identifies inputs that 

are not being optimally used (Shero et al. 2022). This ability to pinpoint inefficiencies helps in 

refining educational strategies and resource allocation. Widely adopted across educational 



 

Comparing an Integrated Data Envelopment Analysis and Machine Learning Models  
  

169 

research, DEA has been instrumental in evaluating the performance of schools and universities, 

providing insights that guide improvements in educational practices. Despite the widespread 

use of DEA in educational efficiency analysis, its predictive potential remains underutilized. 

Similarly, while ML models are employed for predictive tasks, they lack the capacity to provide 

efficiency-specific insights. This gap highlights the need for a framework that combines DEA's 

evaluation strengths with ML's predictive power, enabling more nuanced and accurate analysis. 

This study addresses these limitations by integrating data envelopment analysis (DEA), a well-

established efficiency evaluation tool, with machine learning (ML), renowned for its predictive 

capabilities. 

Thus, this study aims to develop a full framework implementation of DEA model with ML 

approaches to predict the student’s academic achievement efficiency. Therefore, in the 

objectives of the study, the following are the objectives that need to be achieved: 

 

1. To evaluate the selection of input and output variables for measuring the academic 

achievement efficiency of final year diploma students using the DEA model. 

2. To develop predictive models for the academic achievement efficiency score based on 

integrated DEA and ML approaches. 

 

As new research on predicting efficiency score of students' academic achievement for DEA 

model using ML approaches will create a new research question that requires extensive 

empirical research work. All the research works need to be designed appropriately, considering 

many aspects based on the selection input and output variables and the ML configurations. The 

empirical works should observe how the ML algorithm can influence the efficiency score. 

Additionally, it is essential to look at the selection of input and output variables and its 

efficiency score to ML accuracy. It is also vital to observe ML performances with the other 

kind of ML algorithms. Thus, this research will fill the research gap on the development of 

predictive model using integrated method using DEA and ML approaches.  

2. Literature Review 

2.1.  An overview of efficiency analysis in education 

 The primary objective of the literature review is to elucidate the development of Performance 

Evaluation method in measuring academic achievement in education area and prior research 

findings pertinent to this study, with a particular emphasis on data envelopment analysis (DEA). 

Efficiency in education occurs at a time when the output can be test results or added value 

produced at a minimum level or resources, such as finance or the natural ability of students 

(Johnes 2015). This refers to achieving maximum results (output) using minimum effort (input) 

in limited time. Whereas according to Ghaffarian Asl and Osam (2021), effectiveness can be 

seen as compatibility between the output that is the main goal and other criteria in relation to 

efficiency. This means that consider effectiveness and efficiency as two dimensions of 

institutional performance (Lindsay 1982). It can be said that when an organization or an 

individual has high efficiency, it will always increase the effectiveness of the achievement of 

that achievement. Table 1 provides a comprehensive review of various studies that assess the 

efficiency of educational institutions across different countries, employing a range of 

methodologies and efficiency models. 

Numerous methodologies for efficiency analysis have been developed (Table 1), 

demonstrating valuable progress in supporting decision-makers in making informed choices. 

Pure technical in efficiency model dominantly its study globally such as in Spanish, Contreras 

& Lozano (2022) had analyzed the Spanish public university system in order to maximize its 
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efficiency involving 84 universities. Studied in Germany by Zarrin (2021) and Gralka et al. 

(2019) involving 28 university hospitals in Germany. While Camanho et al. (2021) investigates 

the relationship between students’ performance and the type of school attended during upper 

secondary education. Overall, looking at the assessment column, it was found that the focus of 

existing studies largely centers on teaching and research. This leaves other critical educational 

outputs, such as student employability, satisfaction, and post-graduation success, relatively 

underexplored. Expanding the focus on these areas could provide a broader understanding of 

educational outcomes. Lastly, the research predominantly relies on traditional DEA models. 

Exploring newer or unconventional efficiency models could yield fresh insights, particularly in 

managing complex educational environment. 

Table 1. A listing of recent studies on university efficiency analysis 

Research Country Methodology Efficiency 

model 

Assessment Duration 

(Contreras & Lozano 

2022) 

Spanish DEA Pure Technical Overall 2016 

(Camanho et al. 2021) Italy DEA Malmquist 

index 

Teaching and 

Research 

2017-2018 

(Tavares et al. 2021) Brazil Network DEA Technical & 

Scale 

Teaching and 

Learning 

 

(Zarrin 2021) Germany DEA Pure Technical Teaching and 

Learning 

 

(Tran et al. 2020) Vietnam Stochastic 

Frontier 

 Teaching and 

Learning 

2013-2014 

(Segovia-Gonzalez et 

al. 2020) 

UK DEA Pure Technical Teaching and 

Research 

2018 

(Gralka et al. 2019) Germany DEA 

SFA 

Pure Technical Research 2004-2013 

(Yang et al. 2018) China Two-stage DEA Not mentioned Research 2010-2013 

(Jauhar et al. 2017) India VRS Pure Technical Teaching and 

Learning 

2001/02-

2012/13 

(Sagarra et al. 2017) Mexico VRS Pure Technical Teaching and 

Learning 

2007-2012 

(Munoz 2016) Chile CRS and VRS Pure Technical Research 2013–2014 

(Pietrzak et al. 2016) Poland DEA Scale Research 2013-2014 

(Aziz et al. 2013) Malaysia DEA Technical Overall 2011 

 

2.2. Data envelopment analysis 

Data envelopment analysis (DEA) is a non-parametric performance measurement tool 

introduced by Charnes, Cooper, and Rhodes in 1978 to evaluate the efficiency of Decision-

Making Units (DMUs) such as businesses, government agencies, healthcare facilities, and 

educational institutions. Unlike traditional evaluation methods, DEA uses linear programming 

to compare the ratio of inputs (resources) to outputs (results) without requiring predefined 

weights or financial benchmarks (Ray 2022). The model assesses efficiency relative to a 

frontier, where DMUs on the frontier are efficient, while those below it are inefficient (Cooper 

et al. 2007). DEA has evolved with various models, including the CCR model (constant returns 

to scale) and the BCC model (variable returns to scale), making it adaptable for real-world 

efficiency assessments. In education, DEA is widely used to evaluate the efficiency of 

institutions, programs, and policies by analyzing how well resources such as faculty and 

funding contribute to student success (Zubir et al. 2024; Zubir et al. 2023).The ability of DEA 

to handle multiple inputs and outputs while accommodating complex educational structures 
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makes it a valuable tool for assessing institutional performance (Abramo et al. 2018; Pokushko 

et al. 2020). 

Despite its advantages, DEA has limitations, particularly its lack of predictive power and 

sensitivity to statistical noise, which can distort efficiency assessments (Jauhar et al. 2023; 

Zhong et al. 2021). Additionally, DEA's computational demands increase significantly with 

larger datasets containing numerous inputs and outputs, limiting its scalability (Emrouznejad 

& Shale 2009). While DEA has traditionally been used for institutional efficiency evaluations, 

recent studies have applied it at the individual level, treating students as DMUs to analyze 

academic efficiency. Efficient score predictions from DEA are essential for benchmarking 

performance and guiding resource allocation. Integrating machine learning (ML) with DEA has 

been proposed as a solution to enhance predictive capabilities, allowing for proactive and 

strategic decision-making in education. By addressing DEA’s predictive limitations and 

computational challenges, future research can further optimize its role in assessing and 

improving educational efficiency. 

2.3. Machine learning  

Machine learning (ML), a subset of artificial intelligence (AI), enables systems to learn from 

data and make predictions with minimal human intervention. Integrating ML with data 

envelopment analysis (DEA) enhances DEA’s ability to handle complex data patterns, improve 

predictive accuracy, and strengthen efficiency evaluations. DEA, traditionally used to assess 

the efficiency of Decision-Making Units (DMUs), is limited in managing non-linear 

relationships and large datasets. ML techniques, known for their flexibility and pattern-

recognition capabilities, complement DEA by allowing for more advanced performance 

assessments (Avramidou & Tjortjis 2021; Sampath Kumar et al. 2023). Predictive modeling, a 

key aspect of ML, includes regression for continuous outcomes and classification for discrete 

categories. Regression models have been applied in areas such as environmental impact 

assessment and agricultural planning, while classification models have been used in education 

to predict student performance and early intervention strategies (Umer et al. 2017). The 

combination of DEA and ML enables more dynamic efficiency evaluations, expanding DEA’s 

traditional applications beyond static measurements. 

Integrating ML into DEA frameworks improves model functionality, interpretability, and 

robustness across various domains. ML techniques enhance feature selection, enabling DEA to 

focus on the most influential variables while handling large multidimensional datasets. This 

makes DEA more applicable in complex, data-rich environments such as healthcare, finance, 

and education (Abramo et al. 2018; Pokushko et al. 2020). The synergy between DEA and ML 

bridges gaps in traditional DEA models, increasing predictive power and supporting more data-

driven decision-making. Empirical studies confirm the feasibility and effectiveness of this 

integration, demonstrating its ability to enhance performance evaluation and benchmarking 

(Zhong et al. 2021; Jauhar et al. 2023). This evolving integration offers valuable insights for 

further exploration, highlighting the potential of hybrid DEA-ML models in various industries. 

Table 2 provides a summary of key findings on the integration of DEA with ML techniques. 

By combining the literature of DEA methods and machine learning integration method, we 

can notice that some of studies reflect the evolving integration of data envelopment analysis 

(DEA) with various ML techniques to enhance performance evaluation, efficiency 

measurement, and predictive accuracy across diverse fields. They have achieved good results 

through empirical studies and verified the reasonableness and feasibility of the integrated 

model. of DEA and ML. This provides valuable experience for further in-depth exploration.  
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Table 2: Previous findings on integrating DEA with machine learning approaches 

References Integrating Approach  Application 

(De La Hoz et al. 2021) DEA 

Clustering 

To evaluate and forecast the academic efficiency 

of engineering programs in Colombia. 

(Zhishuo Zhang et al. 

2022) 

DEA-SBM 

11 ML Algorithm 

Proposes a performance prediction method  

(Singpai & Wu 2020) DEA 

AutoML 

To assess and predict performance in SDGs 

(Zhong et al. 2021) SE-SBM 

15 ML algorithm 

To construct the regression model. 

(Jomthanachai et al. 

2021) 

DEA 

ML 

To predict and determine the risk level based on 

the efficiency of DMUs. 

(Liu et al. 2021) DEA 

Regression 

This study is to forecast annual fishery capacity. 

(Xu et al. 2021) DEA 

ML (CART, BT, RF, LR) 

To predict the U.S COVID-19 response 

performance.  

(Zhu et al. 2021) DEA 

ML 

To predict the DEA efficiency of DMUs. 

(Akhavan Kharazian et 

al. 2019) 

DEA 

CART 

Determines the efficiency of individuals 

 

(Tsaples et al. 2022) DEA 

CART 

To explore country sustainability composite 

indices under different perceptions and 

assumptions. 

 

2.4. Identified research gaps  

Gap 1: Subjectivity in input and output selection for DEA analysis 

Through comprehensive literature exploration, it has been found that input and output selection 

in data envelopment analysis (DEA) is a critical step that significantly influences the scope and 

conclusions of efficiency analysis. In the context of education, outputs typically represent 

outcomes from various educational levels (e.g., primary, secondary, post-secondary), while 

inputs are the mechanisms by which decision-making units (DMUs) achieve these outcomes. 

Many research highlighted the importance of the selection of inputs and outputs in DEA, 

however, they found that they were inherently subjective. Variables such as Human Resources, 

Facilities, Financials, Equipment, Curriculum, Student Characteristics, and Community 

Resources are commonly categorized as input themes, while Student Achievement, Graduation 

Rates, Employment Outcomes, and Research Outcomes serve as output themes. This diversity 

reflects the wide-ranging factors influencing educational efficiency. Yet, the absence of 

universally accepted guidelines for defining these variables introduces inconsistency, limiting 

the comparability and validity of results. Misaligned or irrelevant variable selection can result 

in inaccurate evaluations of DMU performance, undermining the reliability of DEA analyses 

in education. The systematic studies conducted by Mohamad Razi et al. (2024) compiled seven 

input themes and four output themes, it is evident that the selection of input and output variables 

in efficiency studies lacks a standardized rule or benchmarking framework. This situation 

highlights a notable gap: an overemphasis on traditional inputs, such as human resources, 

financial resources, and student characteristics, while limited attention is given to broader, more 

comprehensive competencies. Based on current research, there were no studies that use student 

achievement and student satisfaction as input and student competencies (personal, adaptive, 

social, digital and 21st competencies) as output to be included in the potential selection input 

and output to measure student academic efficiency. This would be a significant literature gap 

that this study could fulfill. By introducing new input and output into the selection of input and 
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output in measuring efficiency in education can lead to varying efficiency scores (Ahn et al. 

2022) and allows more nuance understanding of efficiency (Mosbah et al. 2020).  

Gap 2: Limitations in DEA’s predictive capabilities and efficiency evaluation 

Another significant methodological gap is the evaluation of efficiency scores through the 

integration of DEA with ML approaches, including conventional algorithms, artificial neural 

networks (ANN), and automated machine learning (AutoML) frameworks. While DEA is 

widely recognized for assessing efficiency, its reliance on deterministic models often limits its 

adaptability to dynamic and complex datasets. For instance, when a new DMU requires an 

efficiency score, the DEA analysis must be re-conducted, as noted by (Anouze & Bou-Hamad 

2019; Zhu et al. 2021). To address these limitations, developing a predicted model for 

efficiency scores becomes essential. Integrating DEA with ML approaches mitigates many of 

DEA's inherent limitations, such as the inability to handle large, complex datasets and its lack 

of predictive capabilities. Moreover, ML integration enhances the discrimination capability 

(Jomthanachai et al. 2021) among decision-making units (DMUs), enabling more robust 

efficiency evaluations. Recent studies (Kannan et al. 2024; Khoubrane et al. 2024) have further 

demonstrated the effectiveness of hybrid DEA-ML models reinforcing the potential of these 

integrated approaches to provide scalable, predictive, and interpretable efficiency evaluation 

tools in educational and institutional settings. 

These two research gaps (1) the subjectivity and lack of standardized guidelines for input-

output selection in DEA and (2) the limitations of traditional DEA in handling dynamic datasets 

and predicting efficiency scores underscore the need for innovative approaches. Developing 

integrated predictive models that combine DEA with advanced ML techniques offers a pathway 

to address these challenges, streamlining efficiency evaluations while enhancing accuracy and 

reliability in educational contexts. 

3. Methodology 

3.1. Research design 

This research design aims to develop a comprehensive framework for predicting students' 

academic achievement efficiency by integrating data envelopment analysis (DEA) and machine 

learning (ML) approaches as presented in Figure 5. The data analysis is structured into two 

main phases: first, efficiency scores are calculated using DEA with constant returns to scale 

(CCR/CRS) and variable returns to scale (BCC/VRS) models, and second, predictive models 

are developed using machine learning algorithms. By meeting its objectives, the study aims to 

enhance the accuracy and reliability of efficiency assessments, offering meaningful insights to 

improve educational outcomes. Key research objectives include evaluating the selection of 

input and output variables for measuring students' academic achievement efficiency, optimizing 

super-efficiency models within DEA to accurately identify the most efficient decision-making 

units (DMUs), and developing predictive models for academic achievement efficiency scores 

through the integration of DEA and ML approaches.  

3.2. Population and sample 

 The target population for this study comprises all the final year diploma students who enroll in 

diploma level Universiti Teknologi Mara. A total of 24,074 final year diploma student been 

registered (Data Analytics and Statistics Unit, UiTM) in 15 campuses with various diploma 

programs in UiTM all around Malaysia. These campuses and branches been divided into five 

main regions. The Northern region had four main campuses. Central region had two campuses. 
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East Cost region, Southern region and East region had 3 campuses,4 campuses and 2 campuses 

respectively. Due to limited circumstances and time, this study decided to take a sample instead 

of the whole population. Since it involves a very large geographical region, multistage cluster 

sampling has been chosen for this study. The procedure involved in multistage cluster sampling 

is not very different from that in random sampling. 

3.3. Research instrument and data gathering 

Building upon our earlier publication on instrument development (Ahmad et al. 2023), this 

study utilizes the same validated tool, the Student’s Competency Questionnaire (SCQ), to 

explore the integration of DEA and ML approaches. The SCQ consists of four parts: Part A 

(student demographics), Part B (academic background), Part C (student competencies based on 

Education 5.0@UiTM), and Part D (student satisfaction). The competencies in Part C are 

measured using a 10-point Likert scale ranging from Not Competent at All to Very Competent, 

providing greater granularity compared to the traditional 7-point scale. This choice aligns with 

recommendations by Awang et al. (2016), who found 10-point scales more effective for 

measurement models. Informed consent was obtained from all participants, and they were 

assured of their right to withdraw at any point without consequence. 

3.4. Decision making units and input and output selection 

The selection of decision-making units (DMUs) is a crucial criterion in measuring relative 

efficiency. In this study, DMUs are defined as individuals, specifically the final year diploma 

students. A general rule of thumb, as stated by Raab and Lichty (2002) and Khezrimotlagh 

(2015) suggests that the number of DMUs should be greater than or equal to three times the 

sum of the inputs and outputs. Given that this study involves two inputs and five outputs, the 

minimum number of DMUs required is (2+5)*3=21. With a total of 1,282 final year diploma 

students initially considered, 183 samples were excluded due to incomplete information, 

leaving 1,099 decision-making units (DMUs) for this study. This sample size is deemed more 

than sufficient to proceed with the analysis. This study selected two inputs: student results 

(CGPA) and student satisfaction, and five output: five types of competencies (Personal, 

Adaptive, Digital, Century, and Social). The selection of these variables is based on the 

university's efficiency in terms of developing students' competencies, with the aim of 

identifying the skills students possess upon graduation and whether they correlate with their 

academic achievements 

Input variables involved the Student Result determined by Cumulative Grade Point Average 

(CGPA). The CGPA is calculated by taking the weighted average of the grade points earned in 

all completed courses, where the weight of each course is determined by its credit hours. Next 

for the Satisfaction, it measure the level of contentment or satisfaction experienced by students 

during the diploma study. 16 satisfaction items consisting the to measure overall final year 

diploma student satisfaction during their studies. Meanwhile for output variables consisting five 

outputs variables which are Personal, Adaptive, Digital, Century, and Social competencies. 

Personal competency refers to the combination of skills, behaviors, and attitudes that enable an 

individual to navigate their personal and professional lives effectively. In an educational 

context, developing personal competency involves helping students cultivate a strong sense of 

self, resilience, and the ability to manage their emotions and relationships. This study involved 

nine item to measure final year diploma student with are self-control, trustworthy, 

Conscientiousness, Adaptability, Innovativeness, Achievement drive, Commitment, Initiative, 

Optimism.  
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3.5. Student achievement efficiency based on different input and output selection 

Four models have been developed based on different selection inputs and outputs. Figure 1 

illustrates a structured approach to variable selection across different model variants, all 

designed to evaluate how educational inputs (CGPA and satisfaction) can be optimized to 

enhance various student competencies. The selection of specific groups of variables for each 

model is based on thematic groupings that reflect distinct dimensions of student competencies.  

 

 

 

Figure 1: Input and output selection framework for DEA models evaluating student efficiency 

 

3.6. Development of an integrated DEA and ML predictive model  

Phase 1: Data preparation and preprocessing 

Data preprocessing is performed on the student achievement dataset. In this phase, two main 

procedures have been conducted in order to produce an accurate result of efficiency score. The 

first is outliers. This study identifies the present of outliers using Mahanalobis Distance 

technique. A threshold of 18 for the Mahalanobis Distance was established as the cutoff for 

identifying and omitting outliers from the dataset. This threshold is well-supported in the 

literature, including studies by Barnett and Lewis (1994) and Leys et al. (2018), and is 

commonly used in practice. Therefore, in this study, Mahalanobis Distance values greater than 

18 were considered as outliers and were excluded from further analysis. While the second issue 

was missing value. Dealing with self-reported data might face a missing value, ultimately will 

lead to biased result, thus, to overcome this, descriptive statistics been used to identify the extent 

and pattern of missingness, determining whether it is random or systematic. This approach, 

supported by studies like Ochieng’ Odhiambo (2020), helps maintain the dataset's size and 

integrity while minimizing distribution distortion.  

Phase 2: The development of DEA model 

A radial model of CCR (CRS) and BCC (VRS) were used to measure the efficiency score. This 

study preferred output orientation model since the major focus on enhancing students' 

competencies (Adna et al. 2025; Toloo et al. 2021). The CCR Model (Charnes, Cooper, and 

Rhodes) model assumes constant returns to scale, meaning that an increase in inputs will lead 

to a proportional increase in outputs. By using the CRS model, the researchers could assess the 
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overall efficiency of the programs, taking into account both technical and scale efficiency. In 

this context of study, using CRS model, the efficiency of each student in transforming their 

input (CGPA and Satisfaction) into output (personal competencies, adaptive competencies, 

digital competencies, 21st century competencies, social competency). The BCC(VRS) and 

CCR(CRS) model have been formulated as in Eq. (1) and Eq. (2) respectively. 
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where 0  is the efficiency score of the DMU being evaluated for both model (BCC and CCR);

ijx is the input I for DMUj; rjy  is the output r for DMUj; j  is the intensity variable (weights) 

associated with each DMU; ( )0,1 i

n

j ij ij
x x

=
 is the value of the i-th input for the DMU under 

evaluation, denoted by 0; ( )0 0,1 r

n

j rj rj
y y 

=
 is the multiplication from jx  input and output 

values; n is the number of DMUs (1099) and 
1

1
n

jj


=
=  is the  convexity constraint which 

allows for variable return to scale (referring to BCC model). 

Phase 3: The development of integrated predictive model using DEA+ML approaches 

In this phase, the study presents the design and implementation of a predictive model to estimate 

efficiency scores using three machine learning approaches: conventional machine learning, 

artifical neural network (ANN) and metaheuristic AutoML genetic programming based. The 

conventional ML algorithm will serve as a baseline, utilizing traditional techniques such as 

regression, decision trees, and gradient boosting. On the other hand, metaheuristic AutoML will 

employ advanced optimization strategies to automatically select the best model and 

hyperparameters, aiming to enhance prediction accuracy and computational efficiency. Before 

proceed to develop the predictive model, certain keys of assumption need to be checked to 

ensure that the model is valid, reliable and interpretable. Normality, linearity, homocedasticity 

assumptions have been assessed. The normalized procedure also be done. Once all the 
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assumptions have been identified, the next process is to develop the integrated predictive model 

using DEA and ML approaches. 

 

a) Developing an integrated predictive model using DEA and ML approach (conventional 

ML regressor) 

In developing predictive methods, selecting the appropriate ML algorithm is crucial to ensure 

the model aligns with the nature of the dataset and the study's objectives. Two primary types of 

ML algorithms are ML regressors and ML classifiers. The choice depends on whether the target 

variable is continuous or categorical.ML regressors aim to predict continuous numeric values 

based on input features, making them well-suited for datasets where the dependent variable can 

take any real number within a specific range (Sagar et al. 2023; Zhang et al. 2022). Regressor 

algorithms model the relationship between independent variables (features) and the continuous 

dependent variable (target) to provide accurate predictions. In this study, the dependent variable 

is the efficiency score, which is a continuous numeric value derived from DEA. Given this 

characteristic, ML regressor algorithms were chosen to predict efficiency scores effectively. 

The continuous nature of efficiency scores requires a regression approach to model the 

relationship between predictors (e.g., student performance metrics) and the target variable, 

ensuring precise and interpretable predictions. Common algorithm used by previous study was 

in regression model which linear regression (Ghildiyal et al. 2024), polynomial regression 

(Sagar et al. 2023) and multivariate regression (Zhang et al. 2019) and ridge regression and 

LASSO (Petrelli 2023). 

When choosing between parametric and non-parametric algorithms for regression, the 

decision depends on the data's nature and the study's objectives. Parametric models assume a 

specific form for the relationship between variables, making them computationally efficient and 

easy to interpret. They work well when their assumptions hold but are limited in flexibility 

(Taylan 2020; Yavuz & Şahin 2022). Non-parametric models, on the other hand, do not assume 

a fixed functional form, allowing them to capture complex, nonlinear patterns in the data 

(Laksaci et al. 2023). They are more adaptable, particularly for high-dimensional datasets, but 

may require more computational resources. Given the continuous nature of the dependent 

variable (DEA efficiency scores), regression models were more suitable than classifiers, which 

are commonly found in earlier studies but are limited to categorical outcomes. 

In this study, non-parametric regression approaches were prioritized due to their adaptability 

to high-dimensional educational data and ability to model non-linear student performance 

patterns. With a large sample size (n = 1099) and the goal of precise individual-level prediction, 

algorithms such as K-nearest neighbors (KNN), decision tree, random forest, support vector 

regression (SVR), and gradient boosting regressor (GBR) were employed for their robustness 

and proven performance in similar domains.  

b) Developing integrated predictive model using DEA and ML approach (artificial neural 

network (ANN)) 

Artificial neural network (ANN) is composed of many artificial neurons that are linked together 

according to specific network architecture. ANN provides a new way for feature extraction 

using hidden layers and classification. Multilayer perceptron (MLP) is the most widely used 

ANN technique for data classification due to its most robust and special type of neural network 

(Isabona et al. 2022). Thus, in this study, we developed four models based on various activation 

function. This variety of activation functions (refer Table 3) allows a comparative analysis of 

how different non-linearities in the hidden layers impact the overall model performance. ANN 
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was selected to model deeper and more abstract relationships, particularly where traditional 

tree-based methods may fall short. 

Table 3: The choice of activation function of four predictive models using DEA+ANN approach 

Model Activation 

function 

(1st hidden 

layer)-10 

Activation 

function 

(2nd hidden 

layer)-8 

Activation 

function 

(Output 

layer)-1 

1 ReLU ReLU Linear 

2 Swish Swish Linear 

3 Leaky_gut Leaky_gut Linear 

4 elu elu Linear 

 

c) Developing an integrated predictive model using DEA+ML approach (AutoML via 

genetic programming) 

The integration of DEA with AutoML is a burgeoning area of research that aims to enhance the 

efficiency, accuracy, and applicability of DEA models. An innovative approach that leverages 

the principles of genetic algorithms to automate the process of model selection, feature 

engineering, and hyperparameter tuning is via genetic programming (Raglio et al. 2020; 

Schofield & Lensen 2021). The integration of genetic programming into AutoML frameworks 

can enhance the efficiency and effectiveness of machine learning pipelines by automating 

complex tasks and providing interpretable solutions. The process which in genetic 

programming typically includes steps (Figure 3) such as initialization, selection, crossover, 

mutation, and termination. These steps are iteratively applied to evolve programs that meet 

predefined fitness criteria. 

 

Figure 2: General flowchart for genetic programming 

 

On this study, initially, a DEA model is employed to calculate input-output efficiency 

scores. All indicators for input and output variables are defined, and the efficiency score is used 

as the target variable. Before integrated with AutoML via GP, the dataset undergoes 

preprocessing, including normalization to ensure consistency in data values and assumption 

verification earlier. At the beginning of the genetic programming process, a population of 

individual pipelines is randomly generated. This population serves as the starting point for the 

evolutionary process. The population size is defined as 1099, which represents the number of 

individual pipelines that will evolve over the generations. From the current population, two 

individuals are selected based on their fitness scores. The selection mechanism often favors 

individuals with higher fitness scores, ensuring that better-performing models have a higher 

likelihood of passing their characteristics to the next generation. 
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The implementation method of GP machine learning is executed with Python Google Colab 

platform. The AML TPOT machine learning model has been set to employ 70:30 percent ratio 

between cross validation for all experiments. TPOT used cross validation for the machine 

learning training approach and the number of default value for the training and validation 

chunks is defined as 5. The number of iterations for the GP to set the final optimized pipelines 

is determined by the number of generations in such that the algorithm should work better with 

more generations. Since the computational resources constrain cannot handle longer time would 

be required to complete with bigger number of generations therefore smaller number of 

generations (5) been used to quickly evaluate the model’s general behavior. Population size is 

the number of individuals or potential pipelines that can be stored in the GP selection pool. 

Previous experiments by Masrom et al. (2020) found that the default population size 10 is fit 

enough to the algorithm to produce best optimal result. However, since no rule of thumb for 

determining population size, therefore this study decided to start population size of 10 as the 

default population size. Six population sizes have been chosen in this experiment (10, 25, 50, 

and 75, 100, 200) to obtain optimal accuracy. 

Mutation rate is a small value used to control the GP exploration search by applying random 

changes to some of the pipelines in the selection pool. The crossover furthermore is used to tell 

the GP how many pipelines to reproduce at each of the generation. The value for both must be 

in between 0.1 to 0.9 and not exceed 1.0. The mutation setting will be 0.7 and crossover rates 

setting is 0.3. The selection of mutation and crossover rates in genetic programming is a critical 

factor since these parameters determine how solutions evolve over generations, impacting 

convergence speed and solution quality. Study by Masrom et al. (2020) and Hassanat et al. 

(2019) found that higher crossover rates have been found to improve algorithm accuracy, while 

lower rates may lead to premature convergence. Thus, this study chooses to conduct an 

experiment with various mutation rates and crossover rate as stated in Table 4. 

Table 4. The Important Parameters in AutoML via GP 

Parameters Configuration value 

Generation 5 

Population_size 10,25,50,75,100,200 

Mutation rate 0.1,0.2,0.3,0.5,0.9,0.8,0.7 

Crossover rate 0.1,0.2,0.3,0.5,0.9,0.8,0.7 

 

Every experiment method in Figure 3 was repeated with data split 0.3 and each split ratio is 

repeated with six population sizes (10, 25, 50, 75, 100, and 200) and 3 validations from the 3 

GP generations. Thus, the total experiment run was (7 mutation rates X 7 crossover rate X 6 

population size X 1 split ratio (0.3) equal to 294. For each experimental run, three validations 

from five GP generations in total of 1470 (total experiment runs X GP generation). 

The total row of the student achievement efficiency dataset is 1109, which is divided into 

training and testing set as depicted in Figure 3. If the split ratio is 0.7, 776 out of 1109 were 

deployed for training set and the rest of 332 data left for testing. For validation, TPOT used 

cross-validation to divide the training dataset into training and validation set according to the 

number of k-folds. This research used 5 k-folds. New individuals with the highest predictive 

value are added to the population after each generation. This process continues until the 

population size limit is reached (i.e., the number of individuals equals the predefined limit) or 

the maximum number of generations (j = max) is achieved. Once the genetic programming 

process reaches the specified stopping criteria, the best-performing pipelines are selected based 

on their fitness scores and these selected pipelines are then applied to the test dataset to evaluate 

their predictive accuracy and performance. 
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Figure 3. The experimental methodology on GP 

Phase 4: Model validation 

When evaluating the performance of predictive models, especially in regression tasks, it's 

crucial to quantify the model's accuracy and reliability. Commonly used metrics include Mean 

Squared Error (MSE), Root Mean Squared Error (RMSE), Mean Absolute Error (MAE), and 

the Coefficient of Determination (R²). Each of these metrics provides different insights into the 

model's performance and understanding them comprehensively is essential for interpreting 

results accurately. 

Phase 5: Identifying most importance features of integrated predictive model using 

permutation test 

This study employs a comprehensive methodology to identify the most significant features 

influencing student achievement efficiency. The approach integrates permutation tests and 

SHAP (SHapley Additive exPlanations) analysis to evaluate feature importance across the best 

predictive models selected from three ML approaches: conventional ML algorithms, ANN, and 

AutoML via genetic programming. By combining permutation tests and SHAP, the study 

ensures a robust assessment of feature significance, enhancing the interpretability of predictive 

models and the understanding of the factors driving student efficiency. It consists of two main 

phases: First phases Conducting Permutation Test involves procedures such as (1) Baseline 

performance measurement, (2) feature vale shuffling, (3) performance evaluation post shuffling 

and(4)ranking feature importance. While Phase 2 SHAP analysis involved (1) Computing 

SHAP values and (2) Generating SHAP summary plots. 

A larger increase in the error metric (MSE) after shuffling a feature indicates a more 

significant contribution to the model's predictive power. The permutation test results provide 

an initial ranking of features based on their importance. This methodology ensures a thorough 

analysis of feature importance for predicting student achievement efficiency, combining 

permutation tests for assessing model reliance on each feature and SHAP for explaining feature 

contributions. This dual approach not only enhances interpretability but also supports data-

driven educational strategies. 
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Phase 6: Comparison on Efficiency score between traditional DEA model and Integrated 

Predictive models 

Once the best predictive model is identified based on the three approaches (Conventional ML, 

ANN, and AutoML via genetic programming), the next step involves comparing the predicted 

efficiency scores from this optimal model with the original efficiency scores obtained from the 

traditional DEA model. This comparison aims to evaluate the effectiveness of integrating ML 

with DEA in enhancing the prediction accuracy and discriminative power for assessing student 

achievement efficiency. This study evaluated the best model based on performance metrics 

such as Root Mean Squared Error (RMSE), Mean Absolute Error (MAE), R-squared (R²), and 

Spearman’s rank correlation coefficient (rho), the most accurate model from the three 

approaches is selected as the best predictive model. A descriptive statistical analysis to evaluate 

key measures such as mean, standard deviation, median, maximum, minimum values, and the 

number of efficient units identified by each approach and will highlight any differences in the 

distribution of efficiency scores, showing whether the integrated DEA+ML approach provides 

a more refined or accurate assessment. Spearman Rank Correlation Coefficient used to 

determine whether the differences between the original DEA efficiency scores and the predicted 

scores from the best predictive model are significant. Next, the discriminatory power been 

assessed using Evaluate the number of efficient units (i.e., DMUs with efficiency scores equal 

to or greater than 1.0) identified by both approaches. The integrated model may be able to better 

differentiate between efficient and inefficient units, reducing the number of units with perfect 

efficiency scores and thus improving the model's discriminative ability. The best integrated 

predictive model using DEA +ML approaches has been identified based on these comparison 

tests. Overall, the process of developing integrated DEA+ML approaches to predict efficiency 

scores has been compiled into Figure 4. 

4. Results 

4.1. Summary statistics on input and output variables 

The main drawback ohas beenA were its sensitivity to outliers (Dharmapala 2021) and missing 

values (Chen et al. 2020). Especially when using real-life data, outliers are common and 

decrease the precision of the DEA. To address this issue, comprehensive outlier detection and 

handling procedure was implemented. To ensure the accuracy and reliability of the DEA model, 

an outlier detection procedure was implemented using Mahalanobis Distance. This method 

identifies multivariate outliers by measuring the distance between a point and the center of the 

dataset (Rajamani & Iyer 2023; Sari et al. 2021). A cutting point of Mahalanobis Distance 

greater than or equal to 18 was established as the threshold for omitting outliers from the 

dataset. Addressing missing values is crucial because they can lead to biased or invalid results, 

significantly distorting statistical analyses and model predictions. The missing value analysis 

revealed some gaps in the data collection process, necessitating the exclusion of certain records. 

The decision to exclude these records was based on the extent and pattern of missing data, 

aiming to minimize any potential biases or distortions. Consequently, data points exceeding 

this threshold were removed, resulting in a cleaned dataset comprising 1099 observations. This 

sample size is sufficient, as it exceeds the calculated required sample size of 1075 as shown in 

Table 5. This cleaned dataset ensures a more robust and accurate DEA analysis by mitigating 

the effects of outliers and addressing the issue of missing data comprehensively. This 

comprehensive approach ensures that the DEA model's results are accurate and reflective of the 

true performance of the decision-making units (DMUs), providing valuable insights for 

improving educational efficiency. 
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Figure 4. Overall research process for developing predictive efficiency model 

 

Table 5 Descriptive findings on input and output variables 

Variables Mean SD Minimum Maximum 

Variable Input:     

CGPA 3.39 0.34 2.06 4.00 

Satisfaction 7.99 1.22 1.00 10.00 

Variable Output:     

Personal 8.16 1.16 3.89 10.00 

Adaptive 8.21 1.20 4.00 10.00 

Digital 8.30 1.22 4.00 10.00 

21st Century 8.01 1.33 3.40 10.00 

Social 8.23 1.24 4.00 10.00 
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4.2. Interrelationship between input and output variables  

The correlation matrix presented in Figure 5 shows the relationships between various input and 

output variables in the study, including CGPA, Satisfaction, Personal Competencies, Adaptive 

Competencies, Digital Competencies, Social Competencies, and 21st Century Competencies. 

The values in the matrix represent the Spearman correlation coefficients, which range from -1 

to 1. Positive values indicate a positive correlation, while negative values indicate a negative 

correlation. The strength of the correlation is indicated by the color intensity, with deeper red 

colors representing stronger positive correlations and deeper blue colors representing weaker 

or negative correlations. 

 

 

Figure 5: Correlation analysis for input and output selection 

The correlation analysis shows that CGPA has low correlations with other variables (ranging 

from 0.10 to 0.29), indicating its independence from satisfaction and competencies. Satisfaction 

is moderately correlated with all competencies (r = 0.62–0.67), suggesting that higher 

satisfaction is linked to higher competency levels. Strong interrelationships exist among 

competencies, with Personal, Adaptive, Digital, Social, and 21st Century Competencies all 

highly correlated (r = 0.81–0.90). These findings validate the selection of input and output 

variables in the DEA model, as strong correlations enhance the model’s ability to assess 

efficiency accurately (Naseri et al. 2020; Dobos & Vörösmarty 2024). The results confirm that 

student competencies are interdependent, reinforcing the importance of a holistic approach in 

efficiency analysis. Given the high interrelationships observed among input and output 

variables in our study, these input and output selections are thus validated. 

4.3. Identifying the optimal student achievement efficiency  

Table 6 presents the efficiency results of four data envelopment analysis (DEA) models, using 

both the CCR (Charnes, Cooper, and Rhodes) and BCC (Banker, Charnes, and Cooper) 

approaches. The data includes minimum and maximum efficiency scores, the range, mean, 

standard deviation, and the number of efficient decision-making units (DMUs) for each model. 

For the CCR model, the minimum efficiency scores range from 0.4581 (Model 4) to 0.4673 
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(Model 1), with the maximum efficiency score consistently at 1.0000 across all models. The 

range of efficiency scores varies slightly, from 0.5333 in Model 1 to 0.5419 in Model 4. The 

mean efficiency scores show a slight decline from Model 1 (M = 0.7832, SD = 0.0836) to Model 

3 (M = 0.7636, SD = 0.0854), with Model 4 at M = 0.7719 (SD = 0.0865). The number of 

efficient DMUs in the CCR model decreases from 17 in Model 1 to 13 in Model 3, with Model 

4 having 15 efficient DMUs. 

In contrast, the BCC model shows higher minimum efficiency scores, ranging from 0.4818 

(Model 4) to 0.5060 (Model 1). The maximum efficiency score remains at 1.0000 for all 

models. The range of efficiency scores varies from 0.4940 in Model 1 to 0.5182 in Model 4. 

The mean efficiency scores are higher than those in the CCR model, ranging from 0.8654 in 

Model 3 (SD = 0.1024) to 0.8820 in Model 1 (SD = 0.0959). The standard deviations are slightly 

higher than those in the CCR model, indicating more variability, with values ranging from 

0.0959 to 0.1024. The number of efficient DMUs in the BCC model is significantly higher, 

decreasing from 134 in Model 1 to 110 in Model 3, with Model 4 having 113 efficient DMus. 

Overall, the BCC model consistently shows higher mean efficiency scores and a greater number 

of efficient DMUs compared to the CCR model. This difference highlights the BCC model's 

ability to account for variable returns to scale, providing a more nuanced and often more 

favorable efficiency assessment. The variability in efficiency scores, as indicated by the 

standard deviations, suggests that the BCC model captures a broader range of efficiency levels 

among DMUs. 

Table 6. Summary statistics for proposed CCR and BCC model 

Item CCR Model Efficiency BCC Model Efficiency 

Model 

1 

Model 

2 

Model 

3 

Model 

4 

Model 

1 

Model 

2 

Model 

3 

Model 

4 

Minimum  0.4673 0.4612 0.4595 0.4581 0.5060 0.5033 0.5022 0.4818 

Maximum  1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 

Range 0.5333 0.5388 0.5405 0.5419 0.4940 0.4967 0.4978 0.5182 

Mean 0.7832 0.7736 0.7636 0.7719 0.8820 0.8738 0.8654 0.8703 

Std. 

deviation 
0.0836 0.0841 0.0854 0.0865 0.0959 0.0988 0.1024 0.1012 

Number 

of 

efficient 

DMUs 

17 16 13 15 134 121 110 113 

 

Furthermore, this analysis compares the discriminatory capabilities of the Banker, Charnes, 

and Cooper (BCC) model and the Charnes, Cooper, and Rhodes (CCR) model in evaluating the 

efficiency of decision-making units (DMUs). The BCC model exhibits superior discriminatory 

power, as evidenced by its ability to recognize a larger number of efficient units and a greater 

standard deviation in efficiency scores. This suggests that the BCC model excels at 

differentiating DMUs based on their operational scales and efficiency characteristics, which is 

essential for nuanced analysis and effective policy making. In contrast, the CCR model 

demonstrates moderate discriminatory power. It effectively distinguishes between fully 

efficient units and others to a certain extent; however, its lower standard deviation and fewer 

identified efficient units imply a reduced sensitivity to variations among DMUs, especially 

those not operating at optimal scales. This characteristic suggests that the CCR model may not 
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capture the full range of operational efficiencies in environments where variable returns to scale 

are significant. 

The enhanced discriminatory power of the BCC model makes it particularly suitable for 

detailed efficiency analyses. By identifying a broader range of efficient units, the BCC model 

facilitates the discovery of best practices and supports benchmarking efforts, thus fostering 

operational improvements across units. The application of the BCC model in academic research 

enhances the credibility and relevance of findings Dellnitz et al. (2018), as demonstrated in 

Table 4.13. The model's thorough approach to assessing efficiency under variable returns to 

scale, as highlighted by Dellnitz & Rödder (2020), ensures that the research conclusions are 

robust, practical, and accurately represent the operational dynamics at play. This is crucial for 

studies that aim to influence policy or organizational strategies. The selection of the BCC model 

for this study is based on its proven ability to handle variable operational conditions and its 

exceptional capacity to differentiate performance among DMUs. By accurately identifying the 

sources of inefficiencies whether they stem from underutilization of resources or diminishing 

returns the BCC model supports more targeted recommendations for improving student 

performance, aligning closely with educational strategies that emphasize personalized and 

competency-based learning approaches. Sun (2017) supported that in educational context, 

different models such as the exam review model and talent cultivation model highlight various 

aspects of learning efficiency. Therefore, the BCC model's flexibility, its ability to capture 

variable returns to scale, and its demonstrated effectiveness in complex settings make it a highly 

appropriate and theoretically robust tool for evaluating student academic achievement. Since 

Model 1 under BCC model identifies the largest number of efficient DMUs (134) and may 

offers the broadest insight into students efficiency based on the chosen input and output 

relationship, thus this study decided to choose as the best model since it comprehensively 

assesses efficiency and identify subtle performance differences among students.  

4.4. Integrated prediction model using DEA and ML approaches 

4.4.1. DEA and ML approaches (conventional approach) 

The dataset exhibited deviations from normality, heteroscedasticity, and linearity, requiring 

adjustments such as robust standard errors and nonparametric methods. After evaluating 

multiple regressor, gradient boosting regressor (GBR) demonstrated the best generalization 

with minimal overfitting, followed by random forest as a reliable alternative. KNN and decision 

tree faced overfitting issues, while SVR improved after hyperparameter tuning, as shown in the 

performance summary Table 7. 

4.4.2. DEA with ML (artificial neural network approach) 

The comparative analysis of multi-layer perceptron artificial neural networks (MLP-ANN) 

using different activation functions revealed that activation choice significantly impacts model 

performance. Model 1 (ReLU) showed moderate generalization with a test RMSE of 0.0450 

and R² of 0.7687. Model 2 (Swish) improved generalization, achieving a lower test RMSE of 

0.0391 and R² of 0.8249. Model 3 (Leaky ReLU) performed best in training (RMSE = 0.0336, 

R² = 0.8779) but had slightly lower test accuracy (RMSE = 0.0404, R² = 0.8130). Model 4 

(ELU) demonstrated the most balanced performance, achieving the lowest test RMSE (0.0370) 

and highest R² (0.8434), indicating superior generalization. These results suggest that ELU 

activation provides smoother convergence and enhanced learning, making it ideal for 

educational datasets that require robust handling of noise (Cococcioni et al. 2020; Maurya et 

al. 2023). 
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Table 7. The findings of regression model performance (DEA + conventional ML approach) 

Regressor Hyperparameter 

Tuning 
Data Split MSE RMSE MAE 

KNN Cross Validation Train 0.0007 0.0279 0.0166 

 Test 0.0014 0.0382 0.0232 

 GridSearch Train 0.0000 0.0000 0.0000 

  Test 0.0008 0.0292 0.0177 

Decision Tree Cross Validation Train 0.0000 0.0000 0.0000 

 Test 0.0008 0.0289 0.0129 

 GridSearch Train 0.0001 0.0102 0.0049 

  Test 0.0008 0.0286 0.0145 

Random Forest Cross Validation Train 0.00008 0.0091 0.0036 

Test 0.0006 0.0247 0.0115 

GridSearch Train 0.00008 0.0091 0.0036 

Test 0.0006 0.0247 0.0115 

SVR  Cross Validation Train 0.0022 0.0474 0.0349 

 Test 0.0028 0.0532 0.0368 

 GridSearch Train 0.00005 0.0077 0.0069 

  Test 0.0002 0.0166 0.0110 

GBR Cross Validation Train 0.0000 0.0021 0.0014 

 Test 0.0003 0.0181 0.0094 

 GridSearch Train 0.0000 0.0035 0.0026 

  Test 0.0002 0.0158 0.0099 

 

Figure 6 describes the architecture and performance of the best MLP-ANN model using 

backpropagation. This model consists of an input layer with 7 neurons, two hidden layers, and 

an output layer with 1 neuron. The first hidden layer contains 40 neurons, and the second hidden 

layer contains 38 neurons. The activation function used for both hidden layers is the 

Exponential Linear Unit (ELU), while the output layer uses a linear activation function. Based 

on the Model Architecture this MLP-ANN model consists of 7 neurons (corresponding to the 

seven input features for input Layer, two hidden layers where the first hidden input layer 

consists of 40 neurons with ELU activation function while second hidden layer consists of 38 

neurons with ELU activation function. The output Layer consists of 1 neuron with linear 

activation function which is found suitable for regression tasks. Throughout the experiment 

task, activation function, ELU (Exponential Linear Unit) used in the hidden layers to introduce 

non-linearity, helping the model learn complex patterns while avoiding issues like vanishing 

gradients meanwhile Linear activation function used in the output layer to predict continuous 

values, which is appropriate for regression problems.  

Table 8. Comparison of MLP ANN with different activation functions 

Model Activation 

function 

(1st hidden 

layer)-10 

Activation 

function 

(2nd hidden 

layer)-8 

Activation 

function 

(Output 

layer)-1 

Performance Train dataset 
 

Performance Test dataset 

    RMSE MAE R2 RMSE MAE R2 

1 ReLU ReLU Linear 0.037 0.025 0.862 0.045 0.028 0.769 

2 Swish Swish Linear 0.037 0.026 0.851 0.039 0.026 0.824 

3 Leaky_gut Leaky_gut Linear 0.033 0.023 0.878 0.040 0.025 0.813 

4 elu elu Linear 0.032 0.023 0.889 0.037 0.024 0.843 

 



 

Comparing an Integrated Data Envelopment Analysis and Machine Learning Models  
  

187 

 

Figure 6: DEA-MLP network 

4.4.3. DEA and ML (AutoML via genetic programming approach) 

As a summary presented in Table 9, Model DEA+XGB1, the ∆RMSE is 0.0137 and ∆MAE is 

0.0073, indicating a slight increase in error from training to testing, but overall, the model 

retains an extremely high R² value of 0.9995, showing excellent predictive performance. 

However, Model DEA+XGB2, the ∆RMSE is 0.0116 and ∆MAE is 0.0058, with a slightly 

higher test error compared to training, but the R² value of 0.9559 still indicates strong predictive 

power, albeit with slightly more variability in the test set. This suggests that both configurations 

perform exceptionally well, but the Model DEA+XGB1 achieves a higher level of precision 

and minimal error across training and testing datasets.  

Table 10 compares efficiency scores across DEA integrated with ML models: random forest 

(DEA-RF), gradient boosting regressor (DEA-GBR), artificial neural networks (DEA-ANN), 

and AutoML (genetic programming) (DEA-AutoML (GP)). DEA-GBR (0.8808) and DEA-

AutoML (GP) (0.8799) have the closest mean efficiency to the original DEA, while DEA-RF 

(0.8786) and DEA-ANN (0.8781) are slightly lower. Standard deviation is smallest for DEA-

RF (0.0936), indicating less variability, while DEA-GBR (0.0957) and DEA-AutoML (GP) 

(0.0950) closely resemble DEA. Median efficiency is highest for DEA-AutoML (GP) (0.9002), 

followed by DEA-GBR (0.9001). Overall, DEA-GBR and DEA-AutoML (GP) best align with 

DEA in efficiency distribution, while DEA-RF is more conservative with lower variability. 

DEA-ANN offers more flexibility but predicts moderate efficiency. DEA-GBR and DEA-

AutoML (GP) are the most reliable in replicating DEA results, while DEA-RF provides a stable 

alternative. 

Table 9. DEA+XGB regressor performance result 

Model Best Pipelines RMSE MAE R2 

1 XGBRegressor(learning_rate=0.1, max_depth=8, min_child_weight=2, 

n_estimators=100) 

0.0182 0.0087 0.9622 

2 XGBRegressor(learning_rate=0.1, max_depth=7, min_child_weight=2) 0.0186 0.0110 0.9605 

3 XGBRegressor(learning_rate=0.1, max_depth=6, min_child_weight=4) 0.0185 0.0103 0.9606 

4 XGBRegressor(learning_rate=0.1, max_depth=6, min_child_weight=6) 0.0202 0.0107 0.9536 

5 XGBRegressor(XGBRegressor(learning_rate=0.1, max_depth=7, 

min_child_weight=2, n_estimators=100, n_jobs=1, 

objective=reg:squarederror, subsample=0.3, verbosity=0), 

learning_rate=0.5, max_depth=8, min_child_weight=14,) 

0.0188 0.0112 0.9596 
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Table 10: Descriptive summaries of four integrated predictive DEA+ ML models 

Descriptive DEA DEA-RF DEA-GBR DEA-ANN DEA-GP 

Mean 0.8820 0.8786 0.8808 0.8781 0.8807 

Std.deviation 0.0959 0.0936 0.0957 0.0956 0.0950 

Median 0.9000 0.9000 0.9001 0.8989 0.9002 

Maximum 1.0000 1.0000 1.0200 1.0484 1.0093 

Minimum 0.5060 0.5368 0.5081 0.5113 0.5177 

No of efficient 134 47 44 74 50 

 

Further statistical analysis has been conducted on testing datasets and found that Table 11 

revealed the result on performance metrices on predicted models. DEA_GBR consistently 

outperforms the other models, achieving the lowest RMSE (0.0101) and MAE (0.0039), which 

indicates it provides the most accurate predictions. Additionally, it has the highest R² (0.9889) 

and Spearman’s rho (0.995), meaning it explains the most variance in the data and ranks the 

efficiency scores most accurately. DEA_RF also performs well, with strong R² (0.9736) and 

Spearman’s rho (0.987), but it has slightly higher RMSE and MAE compared to DEA_GBR, 

indicating somewhat less accurate predictions. DEA_GP (XGB) demonstrates good 

performance, with an R² of 0.9622 and a high Spearman’s rho (0.995), but it has a higher RMSE 

(0.0182) and MAE (0.0087) than DEA_GBR. DEA_ANN, however, performs the worst among 

the models, with the highest RMSE (0.0242) and MAE (0.0158), and the lowest R² (0.9361), 

making its predictions less reliable compared to the other models. 

Table 11. Common statistical parameters of four DEA-ML algorithms for testing datasets 

Model RMSE MAE R2 Spearman’s rho 

DEA_RF 0.0156 0.0060 0.9736 0.987** 

DEA_GBR 0.0101 0.0039 0.9889 0.995** 

DEA_ANN 0.0242 0.0158 0.9361 0.969** 

DEA_GP(XGB) 0.0182 0.0087 0.9622 0.995** 

 

DEA_GBR emerges as the best-performing model, excelling in predictive accuracy with the 

lowest RMSE and MAE, the highest R² and Spearman’s rho, and its ability to maintain a 

distribution of efficiency scores similar to the original DEA model. DEA_RF is also a strong 

contender, offering reliable predictions with minimal variability, though it is more conservative 

in identifying efficient DMUs. DEA_GP (XGB) is a close alternative to DEA_GBR but has 

slightly higher error rates. In contrast, DEA_ANN, while allowing for the greatest over-

efficiency, performs the worst in terms of prediction accuracy and consistency. Based on both 

the descriptive statistics and performance metrics, DEA_GBR is the best overall model, 

followed by DEA_RF and DEA_GP (XGB), with DEA_ANN being the least favorable due to 

its higher error rates and lower predictive accuracy. This result consistent with findings by 

(Burnaev & Boldyreva 2024; Langenberger et al. 2023; Sukiasyan 2023) that gradient boosting 

regressor (GBR) and random forest (RF), have shown significant effectiveness in predicting 

efficiency scores across various domains such as healthcare, education, and manufacturing. 

These models are valued for their ability to handle complex datasets and provide accurate 

predictions, making them suitable for diverse applications. 

Not only that, the involvement genetic programming approach in this study shows promise 

in improving prediction accuracy due to its performance in this study. GP has been shown to 

effectively balance the trade-off between interpretability and accuracy in predictive modeling. 

The combination of DEA and GP has been particularly effective. These have been proven by 



 

Comparing an Integrated Data Envelopment Analysis and Machine Learning Models  
  

189 

Panigrahi et al. (2018) produced a DEA-based evolutionary computation model for stock 

market forecasting, demonstrating better performance by efficiently selecting input variables, 

leading to improved prediction accuracy. 

5. Discussion 

This study compared four integrated DEA-ML models (DEA-RF, DEA-GBR, DEA-ANN, and 

DEA-GP) using descriptive statistics and performance metrics (Table 5X). Among them, DEA-

GBR demonstrated the highest median efficiency score (0.9001) and slightly higher mean 

efficiency (0.8808), making it the best-performing model, followed by DEA-RF and DEA-GP. 

DEA-GP exhibited stable efficiency predictions with a narrower range, while DEA-ANN had 

the highest variability, aligning with Zhang et al. (2019), who noted that ANN models can 

produce outlier predictions when not optimally tuned. The integration of ML significantly 

enhanced DEA's discriminatory power, reducing the number of efficient DMUs from 134 (BCC 

model) to 47 (DEA-RF), 44 (DEA-GBR), 74 (DEA-ANN), and 50 (DEA-GP), supporting 

findings from (Kordrostami & Mirmousavi 2013; Lam 2018; Pendharkar 2013; Peyrache & 

Silva 2024) on the role of ML in refining DEA assessments. 

Gradient boosting regressor (GBR) and random forest (RF) outperformed other models in 

predictive accuracy, consistent with Burnaev and Boldyreva (2024), Langenberger et al. (2023), 

and Sukiasyan (2023), who highlighted their effectiveness across healthcare, education, and 

manufacturing domains. Genetic programming (GP) also showed promise in balancing 

accuracy and interpretability, aligning with Panigrahi et al. (2018), who demonstrated the 

potential of DEA-based evolutionary computation for improved prediction accuracy. Feature 

importance analysis using SHAP (refer Table 12) revealed that Digital Competency was the 

strongest predictor across all models, aligning with UiTM’s digital transformation vision as 

emphasized by Md Zain (2020). Social Competency ranked second in most models, 

highlighting its role in student efficiency, while Adaptive Competency was moderately 

important. CGPA and Satisfaction had limited predictive impact, ranking lower across models, 

and 21st Century Competency was consistently the least influential. These findings suggest that 

non-academic factors particularly digital and social skills play a crucial role in shaping 

academic efficiency. This underscores the importance of investing in digital infrastructure, 

competency-based curriculum design, and adaptive learning strategies to enhance student 

outcomes. Overall, the integration of ML techniques with DEA provides a robust, interpretable, 

and scalable framework for evaluating individual student performance and informing 

institutional policy and academic decision-making. 

Table 12 Variable importance based on DEA+ML model 

Variable  DEA-RF DEA-GBR DEA-ANN DEA-GP 

CGPA 6 6 5 6 

Satisfaction 5 5 2 5 

Personal 3 3 6 4 

Adaptive 4 4 3 3 

21st Century 7 7 7 7 

Digital 1 1 1 1 

Social 2 2 4 2 

 

6. Conclusion  

This study aimed to develop and validate a DEA model for assessing the academic achievement 

efficiency of final-year diploma students and to enhance predictive accuracy by integrating 
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DEA with ML techniques. The Student Competencies Questionnaire (SCQ), guided by Pillar 1 

of the Education 5.0 Framework, was developed and validated to ensure reliable data collection. 

Among the four DEA models analyzed, BCC Model 1 emerged as the most effective for 

evaluating student efficiency. To further enhance the model’s predictive power, DEA was 

integrated with ML approaches, including random forest, gradient boosting, ANN, and GP, 

leading to a significant reduction in the number of efficient decision-making units (DMUs) 

from 134 (using DEA alone) to 47 (DEA-RF), 44 (DEA-GBR), 74 (DEA-ANN), and 50 (DEA-

GP). This integration improved the discriminatory power of efficiency assessments, offering a 

more refined evaluation of student performance.  

Despite the promising outcomes of this study, several limitations merit careful 

consideration. First, the dataset was confined to final-year diploma students within a specific 

academic setting, which may limit the generalizability of the findings to broader and more 

diverse student populations. Second, although the integration of DEA with machine learning 

significantly improved the discriminatory power of efficiency assessments, it introduced 

substantial computational demands particularly with the GP approach which posed challenges 

related to processing time and resource optimization. Third, while the selection of input 

variables (CGPA and satisfaction) and output variables (student competencies) was 

theoretically justified, it may not fully encapsulate the complex and multidimensional nature of 

academic achievement at the individual student level, which was the central focus of this study. 

In contrast to traditional DEA applications that assess institutional or organizational units, this 

research evaluated each student as a distinct decision-making unit (DMU), thereby introducing 

additional complexity arising from personal learning trajectories, motivation levels, and 

behavioral variability. Moreover, the use of self-reported data through the Student 

Competencies Questionnaire (SCQ), despite undergoing thorough validation procedures, may 

be subject to response bias and subjective interpretation. To address these limitations, future 

research should incorporate more diverse and objective indicators, such as continuous 

assessment marks and data from student entrance and exit surveys, to better capture longitudinal 

learning outcomes and competency development. Expanding the dataset to include multiple 

institutions and academic programs, along with the deployment of more advanced 

computational infrastructures, would further enhance the validity, scalability, and 

generalizability of the proposed DEA-ML framework for assessing academic efficiency at the 

individual level. 
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