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ABSTRACT  

Managing uncertainties in water demand is a challenging task in modern water resource 

management, especially when factors like unpredictable rainfall patterns and sudden shifts in 

population growth influence consumption trends. Stochastic Differential Equations (SDEs) 

provide a powerful mathematical framework for modeling and analyzing the inherent 

uncertainties in water demand. In this study, SDEs are applied to examine water demand in 

Johor over the period 2005 to 2020, enabling the modeling and forecasting of demand within 

the context of these uncertainties. The water balance model, which tracks the inflow, outflow, 

and storage of water, is introduced to provide a more dynamic and realistic representation of 

water resource fluctuations. The study employs the Euler-Maruyama method for numerical 

solutions, offering a flexible and accurate approach for simulating the dynamic behavior of 

water demand. The findings highlight the importance of incorporating random variations and 

uncertainties into water demand forecasting, offering valuable insights for decision-makers in 

the water industry. This research combines stochastic models with water balance models to 

improve how we predict and manage water resources, helping to ensure a steady water supply 

and reduce long-term risks from water shortages. 

Keywords: water demand uncertainty; Stochastic Differential Equations; water balance model; 

Euler-Maruyama; water demand forecasting 

 

ABSTRAK  

Menguruskan ketidaktentuan dalam permintaan air merupakan satu cabaran yang besar dalam 

pengurusan sumber air moden, terutamanya apabila faktor-faktor seperti pola hujan yang tidak 

menentu dan perubahan mendadak dalam pertumbuhan penduduk mempengaruhi trend 

penggunaan air. Persamaan Pembezaan Stokastik (SDE) menyediakan satu kerangka 

matematik yang berkuasa untuk memodelkan dan menganalisis ketidakpastian semula jadi 

dalam permintaan air. Dalam kajian ini, SDE digunakan untuk menganalisis permintaan air di 

Johor bagi tempoh 2005 hingga 2020, membolehkan pemodelan dan ramalan permintaan 

dalam kontejs ketidakpastian tersebut. Model imbangan air, yang menjejaki aliran masuk, 

aliran keluar, dan simpanan air, diperkenalkan untuk memberikan gambaran yang lebih 

dinamik dan realistik terhadap turun naik sumber air. Kajian ini menggunakan kaedah Euler-

Maruyama untuk penyelesaian berangka, yang menawarkan pendekatan yang fleksibel dan 

tepat dalam mensimulasikan dinamik permintaan air. Hasil kajian menekankan kepentingan 

memasukkan variasi rawak dan ketidaktentuan ke dalam ramalan permintaan air, memberikan 

pandangan yang bernilai kepada pembuat keputusan dalam industri air. Penyelidikan ini 

menggabungkan model stokastik dengan model imbangan air untuk meningkatkan keupayaan 

meramal dan mengurus sumber air, bagi memastikan bekalan air yang stabil serta 

mengurangkan risiko jangka panjang akibat kekurangan air. 

Kata kunci: ketidaktentuan permintaan air; Persamaan Pembezaan Stokastik; model imbangan 

air; Euler-Maruyama; ramalan permintaan air 
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1. Introduction  

Water demand in Malaysia is a growing issue due to industrial expansion and population 

growth, both of which significantly impact water consumption patterns. As Malaysia 

continues to advance economically, the demand for water has risen steadily, creating 

increasing pressure on the country's existing water resources and infrastructure. This situation 

is further complicated by the diverse range of factors that influence water demand, including 

economic factors, particularly Gross Domestic Product (GDP), and variations in water 

consumption patterns. Economic factors, such as changes in GDP, can significantly impact 

water demand as economic growth drives higher industrial activity and increased water usage, 

while economic downturns may reduce consumption. These uncertainties make it challenging 

to accurately predict future water needs and plan for sustainable resource management. 

Water demand forecasting is the process of predicting future water consumption patterns 

based on historical data, climate conditions and other relevant factors. One key purpose of 

water demand forecasting is to provide public water suppliers with future-oriented 

information (Billings & Jones 2011). As a result, extensive research has been conducted on 

water demand forecasting to prevent water resource shortages in various countries. With 

increasing population growth, consumption and the present threat of climate change, accurate 

water demand forecasting has emerged as a pivotal tool in water resource management and 

planning (Anang et al. 2019). Traditional water demand forecasting models use historical data 

and known factors to predict future needs. However, they often struggle with sudden weather 

changes, economic shifts, and rapid urban growth, which can make their predictions less 

reliable. These models may not accurately forecast water demand during extreme events or 

economic fluctuations. This shows the need for more advanced models that use stochastic 

techniques to better manage the unpredictability and variability in water demand. 

This study proposes the use of Stochastic Differential Equations (SDEs) integrated with a 

water balance model. SDEs are particularly suited for modeling systems where uncertainty 

and random fluctuations play a significant role, as they allow for the inclusion of random 

variables that can capture the unpredictable nature of factors affecting water demand. By 

incorporating stochastic elements into the forecasting process, the proposed model aims to 

more accurately reflect the real-world variability in water demand, leading to more reliable 

predictions. This approach not only enhances the precision of water demand forecasts but also 

improves the model's ability to adapt to changing conditions, ultimately supporting more 

effective water resource management strategies. 

This research aims to enhance water demand forecasting by utilizing a specialized 

approach in SDEs, specifically through the application of Geometric Brownian Motion 

(GBM). By integrating GBM, this study addresses uncertainties in water demand forecasting 

linked to fluctuations in economic indicators, particularly GDP, and varying patterns of water 

consumption. Through this approach, the research seeks to capture the dynamic nature of 

these variables, accounting for their randomness and variability, which are pivotal in 

accurately predicting water demand in regions such as Johor. This method provides a robust 

framework for analyzing how shifts in GDP and consumption trends influence future water 

requirements, helping to improve predictive accuracy in the face of economic and behavioral 

uncertainties.  

2. Literature Review 

Water authorities face challenges due to the unpredictable nature of water demand, which is 

influenced by various dynamic factors (Browne et al. 2013). Late detection of these 
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uncertainties can result in inaccurate forecasts, potentially leading to water shortages. GDP, as 

one of the uncertainties, plays a crucial role in understanding and forecasting water demand, 

as it reflects the economic activities that drive the consumption of water resources. Research 

has consistently shown a strong correlation between economic growth and water usage, 

underscoring the importance of incorporating GDP as a variable in predictive models. For 

instance, the Organisation for Economic Co-operation and Development (OECD 2014) 

discussed how economic growth influences water demand, stressing the need to consider 

GDP when developing sustainable water management policies. Similarly, a study by the Russ 

et al. (2022) examines the interconnection between economic performance and water 

resources, demonstrating how fluctuations in GDP can affect both water quality and demand. 

These studies highlight the importance of integrating GDP into water demand forecasting to 

improve resource management and inform policy decisions. 

Addressing uncertainty is crucial for accurate long-term water demand forecasting 

(Rinaudo 2015). These forecasts rely on historical data and future trend assumptions, but their 

accuracy can be compromised by missing or incorrect data and uncertain information quality. 

For an accurate and dependable forecast, it is essential to comprehend both the forecast itself 

and the associated uncertainties (Tiwari & Adamowski 2013). Water demand forecasting 

encompasses both short-term and long-term predictions. Short-term data, which covers 

periods from minutes to months, captures patterns, fluctuations, and variability over a brief 

time frame. This data is valuable for understanding immediate trends, making real-time 

decisions, and addressing current conditions. In contrast, long-term data, extending from 

months to years or even decades, helps identify broader patterns, trends, and cycles over an 

extended period. Various models have been used to forecast long-term water demand and 

these models can be categorized into probabilistic models and deterministic models (Almutaz 

et al. 2013).  

Traditional time series methods for forecasting water demand, such as regression analysis, 

exponential smoothing, and Autoregressive Integrated Moving Average (ARIMA), are 

appreciated for their simplicity and ease of use. However, to make accurate predictions, it is 

crucial to consider factors like seasonality, external influences, and evolving patterns, which 

might require more advanced or combined methods. The ARIMA-M model has been 

introduced by combining ARIMA with Markov Chain error correction to forecast daily water 

consumption (Du et al. 2020). While ARIMA captures linear trends, the Markov Chain 

adjusts for random errors. However, ARIMA may struggle with non-stationary data and 

sudden changes, and the Markov Chain, though helpful, can be complex and may not fully 

address all errors, particularly in highly variable water demand. The model’s success relies on 

high-quality data and careful calibration of both components to handle daily water usage 

complexities. 

The studies by Herdiansyah et al. (2022) and Anang et al. (2019) both highlight challenges 

in accurately modeling water demand due to various methodological limitations. Herdiansyah 

et al.’s (2022) approach uses a simplified calculation, which, while easy to implement, fails to 

account for critical dynamic variables like seasonal changes, income variations, and shifts in 

consumer behavior. This simplification creates a gap, as it limits the model’s ability to capture 

the complex, fluctuating nature of water demand. Similarly, Anang et al. (2019) identifies a 

strong correlation between income levels and water consumption, suggesting income changes 

significantly influence water usage. However, the use of Multiple Linear Regression in Anang 

et al.’s (2019) study presents an issue, as this method assumes minimal multicollinearity 

among variables. Since an assumption is violated, thus reducing the model’s accuracy. In 

contrast, a stochastic approach, such as Stochastic Differential Equations (SDEs), could 

address these limitations. Unlike MLR, SDEs are designed to accommodate both the 

randomness of external factors and the presence of multicollinearity, making them better 
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suited for handling the inherent variability and complex relationships within water demand 

data. 

Stochastic time series methods are widely used for forecasting water demand due to the 

unpredictable nature of water usage patterns. These methods capture randomness and 

variability in consumption, making accurate predictions possible even amidst uncertainties. 

SDEs offer a framework that combines deterministic and stochastic elements, allowing 

researchers to model dynamic systems impacted by random fluctuations. Silva Santos et al. 

(2024) utilized a stochastic model based on Brazilian data to achieve a 40% reduction in 

residential water demand, demonstrating the model’s relevance within Brazilian regions. 

However, adapting the model for different areas, which have unique factors like climate, 

demographics, and infrastructure, is essential for broader applicability. Similarly, Cominola et 

al. (2016) introduced a high-resolution stochastic model for residential water use, which, 

while effective for Monte Carlo simulations and scenario testing, does not include outdoor 

water data which is a key limitation in arid regions. Zubaidi et al. (2020) applied a stochastic 

model to forecast urban water demand in Baghdad, capturing variability through seasonality 

and short-term patterns, supporting accurate predictions for urban water management. Beyond 

water demand, SDEs are also valuable in other fields, such as modeling uncertainties in 

electrical power systems (Verdejo et al. 2019) and balancing real-time demand in wind power 

systems (Olsson et al. 2010). This versatility highlights the potential of SDE-based stochastic 

models for managing dynamic, uncertain systems across various domains.  

Among Malaysian states, Johor stands out as a critical focus for water demand studies due 

to its rapid economic development, population growth, and its vital role in both domestic and 

transboundary water supply systems. Johor's economic landscape is undergoing rapid 

transformation, driven by substantial investments in data centers from global technology 

companies such as Amazon, Nvidia, Google, Microsoft, and ByteDance (Financial Times 

2025). While these developments contribute significantly to economic growth, they also result 

in heightened water and energy demand, placing additional pressure on existing 

infrastructure. In contrast, Kelantan faces challenges in meeting its water demand due to 

limited infrastructure and over-reliance on groundwater sources, which often leads to supply 

disruptions (The Star 2024a). Similarly, Perlis, being primarily an agricultural state, struggles 

with water scarcity during dry spells, severely impacting paddy farmers and resulting in 

significant income losses (The Star 2024b). These inter-state differences underscore the 

necessity for localized, state-specific studies that account for economic activities, governance 

structures, and spatial variability in resource availability to support sustainable and efficient 

water resource management. 

In conclusion, while SDEs have been extensively utilized in diverse fields for modeling 

complex systems, there is currently a gap in the application of SDEs specifically for 

forecasting water demand in Malaysia. This highlights an opportunity for further research to 

explore how SDEs could be applied to improve water demand forecasts in the Malaysian 

context, addressing the unique uncertainties and dynamics present in this region. Furthermore, 

while numerous studies on water demand have been conducted, regional differences in 

climate, infrastructure, and socio-economic factors highlight the need for region-specific 

research. The unique characteristics of the Johor region, including its climate, population 

growth, and urbanization trends, underscore the importance of examining water demand 

within this local context. These factors may influence water consumption patterns in ways 

that differ significantly from other areas, making targeted research in Johor essential to 

develop accurate forecasting models and effective water management strategies tailored to the 

region's specific needs. 
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3. Methodology 

3.1.  Data source 

To conduct a comprehensive analysis of water demand, we relied on secondary data sourced 

from reputable institutions. The primary source of our data was the Department of Statistics 

Malaysia (2014), an official government agency responsible for collecting, analyzing, and 

disseminating statistical data across various sectors in Malaysia. For this study, we directly 

accessed DoSM records to obtain accurate and relevant data. Key variables used in our 

analysis included Gross Domestic Product (GDP), historical water consumption, and water 

demand. The dataset covers the period from 2005 to 2020, offering a robust timeline for 

detailed examination. 

In addition, climate data necessary for the water balance model was sourced from Weather 

and Climate (n.d.). This data included critical variables such as temperature, precipitation, and 

humidity levels, which had been estimated based on 30 years of data. The data was obtained 

by navigating to the historical weather records section on the website and manually extracting 

the relevant information for the study.  

3.2.  Stochastic differential equation 

In a study on factors influencing water demand, a correlation was found between income 

levels and water consumption, suggesting that changes in income might affect water usage. 

However, for Multiple Linear Regression to be valid, independent variables must not exhibit 

significant correlations with each other, a condition known as the absence of multicollinearity. 

When multicollinearity is present, the accuracy of hypothesis tests for individual regression 

coefficients can be compromised. This limitation underscores the need for alternative 

methods, such as Stochastic Differential Equations (SDEs), which can better handle complex 

relationships and uncertainties in water demand forecasting. SDEs are a class of differential 

equations used to model systems that are influenced by random factors. They extend 

traditional differential equations by incorporating stochastic processes and thus SDEs offer a 

realistic representation of complex systems, accounting for the inherent uncertainty and 

variability of real-world phenomena. This approach enhances both the analysis and simulation 

of systems with unpredictable behavior, leading to a better understanding and improved 

predictive capabilities of their dynamics. The general form of an SDE is: 

 

( ) ( ) ( ) ( ) ( ) ( )        dX t t X t dt t X t dW t = + .                         (1) 

 

where ( )X t  is the state variable representing the system’s state at time t, ( ) ( )t X t  is the 

drift term (deterministic part), ( ) ( )t X t  is the diffusion term (stochastic part), and ( )W t  

is a Wiener process or Brownian motion, which introduces randomness into the system.  

In the context of water demand, stochastic differential equations can be used to model 

uncertainties in water usage and forecast future water demand. The SDE for water demand 

can be represented as: 

 

( ) ( ) ( ) ( ) ( ) ( )   D     D  dD t t t dt t t dW t = + .      (2) 
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where ( )D t  is water demand at time t, ( ) ( )t D t  is the drift term representing the average 

rate of change in water demand, influenced by factors such as seasonal variations and long-

term trends, ( ) ( )t D t  is the diffusion term representing the variability and uncertainty in 

water demand due to random factors such as sudden changes in climate or population, and 

( )W t  is a Wiener process that captures the stochastic nature of water demand. 

3.2.1. Geometric Brownian Motion  

Geometric Brownian Motion (GBM) is one of the most widely used models in stochastic 

processes, due to its ability to model random variables that evolve over time with both drift 

(trend) and volatility (random fluctuations). GBM is described by a SDE and is often applied 

to model where the future path of the variable is uncertain. The SDE for a GBM is written as 

in Eq. (2). The solution to this SDE provides the evolution of water demand over time: 

 
2(( (1/2) ) )

0
tt W

tD D e
  − +

=
.
              (3) 

 

This Eq. (3) shows that water demand follows a log-normal distribution, meaning it grows 

exponentially over time while subject to random fluctuations. 21

2
 
 

− 
 

 reflects the adjusted 

drift rate, while tW  introduces stochastic fluctuations. 

3.3. Water Balance Model 

A water balance model is an essential component in hydrology for depicting the dynamics of 

water flow and storage within a particular system, whether it be a watershed, lake, or 

groundwater aquifer. This model operates on the fundamental principle of mass conservation, 

which asserts that the variation in water storage within the system during a defined time frame 

is equivalent to the net difference between the inflow and outflow of water. In simpler terms, 

the water balance equation can be expressed as follows: 

 

        S P T E R = − − − .            (4) 

 

where S  is the change in water storage, P is precipitation, E is evaporation, T is 

transpiration, and R is runoff. The accuracy and reliability of a water balance model's 

predictions can be greatly influenced by uncertainties in its components, especially 

precipitation and runoff.  

4. Results and Discussion 

4.1. Descriptive statistics 

The uncertainties in water demand for this study are influenced by factors such as real 

income, measured by Gross Domestic Product (GDP) in RM Million, and domestic water 

consumption, recorded in Million Litres per Day (MLD).  
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Figure 1: Time series plot for Gross Domestic Product (RM Million) from 2005 to 2022 in Johor 

 

 

Figure 1 shows the trend of Gross Domestic Product (GDP) in Johor (in RM million) from 

the year 2005 to 2022. The plot demonstrates a general upward trajectory over the observed 

period, indicating economic growth. From 2005 to around 2014, the GDP shows a consistent 

but gradual increase, reflecting stable economic growth during this period. There is a 

noticeable jump in GDP starting around 2015, with a sharp rise peaking around 2018. This 

period might indicate stronger economic performance or an expansion in certain sectors 

contributing to GDP growth. After 2018, the GDP shows a period of stabilization or slower 

growth, followed by a slight decline around 2020, possibly influenced by external factors 

such as the global economic slowdown due to the COVID-19 pandemic. The GDP in 2021 

and 2022 reflects a minor dip compared to the earlier peak but appears to recover slightly. 

The mean and variance for GDP are 93319.78 and 970608079 respectively. The mean 

suggests a strong average economic output. Meanwhile, the variance indicates significant 

fluctuations, reflecting a potentially volatile economic environment influenced by various 

external factors such as policy changes or global market shifts. 

 
Figure 2: Time series plot for water consumption (MLD) for 2005 to 2022 in Johor 

 



 

Aniza Akaram, Tan Cheow Qing & Arifah Bahar 

84 

 

Figure 2 shows water consumption in Johor from 2005 to 2022. From 2005 to 2014, water 

consumption in Johor experienced a general upward trend, reflecting growing demand over 

this period. However, this trend shifted as water consumption decreased until 2016. Following 

this decline, water usage rose again until 2021, indicating a renewed increase in demand. In 

2022, a slight decrease was observed, suggesting a potential stabilization or reduction in water 

consumption. The mean and variance for water consumption are 767.0333 and 6164.114 

respectively. The mean provides a baseline for understanding typical usage patterns. Its 

variance indicates a more consistent consumption trend, suggesting that while there may be 

occasional spikes in usage, overall consumption remains relatively stable. 

 
Figure 3: Time series plot for water demand (MLD) from 2005 to 2020 in Johor 

 

 

The time series plot for water demand can be seen as in Figure 3. From 2005 to 2020, 

water demand in Johor exhibited a consistent upward trajectory. This indicates a sustained 

increase in water usage over the 15 years, reflecting either a rise in population, economic 

growth, or other factors driving higher consumption. The mean and variance for water 

demand are 1551.375 and 48525.85 respectively. The average water demand highlights the 

expected total demand for water resources and the variance implies variability in demand, 

possibly driven by seasonal changes or demographic shifts, indicating areas for further 

investigation or resource management. 

4.2. Normality test 

A normality test is a statistical procedure used to determine whether a dataset is well-modeled 

by a normal distribution, which is a key assumption in many statistical analyses. Conducting a 

normality test is essential because many statistical methods, such as t-tests, ANOVA, and 

regression analysis, rely on the assumption that the data is normally distributed. If the data 

does not meet this assumption, the results of these analyses may not be valid. 

In this research, the Shapiro-Wilk test was used to assess the normality of real GDP and 

water consumption. The Shapiro-Wilk test is particularly powerful for detecting deviations 

from normality in small samples (typically n < 50) (Shapiro & Wilk 1965). It is more 

sensitive than other normality tests when sample sizes are limited. The Null Hypothesis ( 0H ) 
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is that the data follows a normal distribution, meanwhile the Alternative Hypothesis ( AH ) 

refers to data is not normally distributed.  

The results of the Shapiro-Wilk normality test indicate that the GDP data does not follow a 

normal distribution, as evidenced by a p-value of 0.03717, which is less than the 0.05 

significance level. This suggests that the GDP data is significantly deviating from normality. 

In contrast, the water consumption data appears to follow a normal distribution, with a p-

value of 0.5014. Since this p-value is greater than 0.05, we fail to reject the null hypothesis, 

indicating that the water consumption data is likely normally distributed. 

 
Figure 4: QQ Plot for Gross Domestic Product (RM Million) 

 

 

A QQ (Quantile-Quantile) plot is a graphical tool used to assess whether a dataset follows 

a particular theoretical distribution, such as the normal distribution. Since our GDP has a 

smaller p-value, we use the QQ plot to show that the GDP data does not follow a normal 

distribution, particularly in the tails as in Figure 4. The data points generally follow a linear 

trend along the reference line, indicating that the GDP data approximately follows a normal 

distribution. At the extreme values (both high and low ends), there is some deviation from the 

line, suggesting slight departures from normality in the tails. This could indicate potential 

skewness or outliers in the GDP data distribution. Overall, the QQ plot suggests that the GDP 

data is reasonably close to a normal distribution, although minor deviations at the ends. 

4.3. Multicollinearity test 

Multicollinearity test is a method used to diagnose and address issues in regression analysis 

where predictor variables are highly correlated with one another. This correlation can 

complicate the estimation of regression coefficients, leading to unreliable or unstable results. 

Correlation coefficients close to +1 or -1 suggest strong correlations.  

The results for the multicollinearity test for GDP and water consumption are 0.8904, and 

0.8779 respectively. This shows there are highly strong correlation between water demand, 

GDP, and water consumption which results in the presence of multicollinearity. 

Multicollinearity can affect the overall performance of the regression model by reducing its 

predictive accuracy and making the interpretation of the coefficients less straightforward. 

Although the model might fit the data well, its ability to generalize to new data and provide 
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reliable predictions might be compromised. This result implies that regression models are not 

suitable to model water demand. 

4.4. Geometric Brownian Motion 

Initially, we estimate the parameters for drift ( ̂ ) and volatility (̂ ) using the Maximum 

Likelihood Estimation (MLE). MLE aims to find the parameter values that maximize the 

likelihood function, which measures the probability of observing the given data under the 

model. To analyze the time series data, we begin by calculating the log returns, which are the 

natural logarithms of the ratio of successive data points. We need to transform the data to log 

returns because log returns provide a way to stabilize the variance, as they normalize the 

effects of extreme values and make the data more homoscedastic. This transformation also 

enables additive modeling of returns over time, allowing for easier interpretation and 

forecasting. Additionally, log returns are more consistent with the assumption of continuous 

compounding, which aligns well with the mathematical framework of GBM. Next, we 

estimate the drift ( )  by computing the average of these log returns, representing the 

expected rate of change. Finally, determine the volatility ( )  by calculating the standard 

deviation of the log returns, which measures the variability or dispersion around the mean 

return.  

Once the parameters are estimated, the GBM process is used to simulate the predicted 

values with standard normal random variables. To enhance the accuracy and reliability of 

these predictions, 100 random numbers are generated for each year, and the average of these 

numbers is used to forecast the values. Creating 100 random numbers of results in a solid 

sample size that is typically adequate for attaining statistical significance in various modeling 

contexts. This quantity effectively captures variability while keeping the analysis relatively 

straightforward. Conversely, generating an excessive number of random numbers can add 

unnecessary noise to the results, complicating the ability to identify significant patterns amid 

random variations. Utilizing 100 random numbers helps ensure a favorable signal-to-noise 

ratio. The Euler-Maruyama method has been utilized to estimate predicted values for GDP, 

water demand, and water consumption by applying GBM to model their stochastic behavior. 

The results for the calculated drift ( )  and the volatility ( )  for GDP are 0.05 and 0.2699 

respectively. The calculation for predicted GDP follows the formula: 

 
2 ))/

1

(( ( 2) t

t

t tZ

tG G e
  −  + 

+ = .           (5) 

 

where G is the predicted value of GDP, t  is the time step, and tZ  is a standard normal 

random variable. The initial value is retained as it is in the original data, while the subsequent 

values are computed according to Eq. (5). 
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Figure 5: Comparison plot for real and predicted GDP 

 

 

The same step is also used for both water consumption and water demand. As for water 

consumption, the calculated drift ( )  and the volatility ( ) are 0.1967 and 0.0773 

respectively. The predicted water consumption is calculated using equation: 

 
2 ))/

1

(( ( 2) t

t

t tZ

tC C e
  −  + 

+ = .           (6) 

 

where C is the predicted value of water consumption. 
 

 
Figure 6: Comparison plot for real and predicted water consumption 

 

 

The value for drift ( )  is 0.4259 and the volatility ( )  is 0.2477 for the parameter of 

water demand. The predicted water demand is based on equation: 

 
2 ))/

1

(( ( 2) t

t

t tZ

tD D e
  −  + 

+ = .            (7) 

 

where D is the predicted water demand. 
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Figure 7: Comparison plot for real and predicted water demand 

 

 

To check the accuracy of GBM model, we calculate using the Root Mean Square Error 

(RMSE) for GDP, water consumption and water demand. The RMSE for GDP is 17,254.27 

RM million, indicating that, on average, the model's forecasts for GDP deviate from the actual 

figures by this amount. With an overall GDP of 1,679,756 RM million, this error accounts for 

approximately 1.03% of the total GDP. When put into context, this RMSE suggests that the 

predictive model is performing relatively well, as the error is just slightly above 1% of the 

total GDP. Such a level of accuracy is typically deemed acceptable in economic forecasting, 

particularly given the complexities and numerous variables that can influence GDP. A low 

RMSE in relation to overall GDP indicates that the model effectively captures general 

economic trends and fluctuations. 

Similarly, the RMSE for water consumption is 35.9127 million liters per day reflects the 

average error in daily water consumption predictions. Considering the total daily consumption 

of 13,806.6 million liters, this RMSE constitutes about 0.26% of the overall consumption. 

This relatively small RMSE suggests that the model is fairly accurate, which is crucial for 

effective water resource management. Even minor inaccuracies can significantly impact 

resource allocation decisions. The low RMSE implies that the model likely considers various 

influencing factors, such as seasonal changes and population dynamics. 

The RMSE for water demand is 165.4403 million liters per day, which indicates the 

average deviation in predicting daily water demand. When compared to the total demand of 

24,822 million liters, this RMSE represents approximately 0.67% of total water demand. 

Although this RMSE reflects a reasonable level of error, it is higher than that for water 

consumption, suggesting that the model may encounter challenges in accurately predicting 

demand fluctuations. This discrepancy could be attributed to factors like changes in 

population growth, industrial activity, and climatic variations, which can all affect water 

demand. 

4.5. Water balance model 

In this study, the water balance model is calculated specifically for Johor Bahru due to the 

region-specific nature of atmospheric data, which can vary significantly across different 

locations. Johor Bahru is selected as a representative area for the state of Johor, as Malaysia's 

tropical climate generally exhibits minimal regional variability, with relatively small standard 

deviations in climatic parameters. This makes Johor Bahru an appropriate proxy for studying 

water balance trends within the broader context of Johor. Johor Bahru, being a highly 

urbanized region in Johor, experiences specific challenges related to water balance due to its 

growing population and industrial activities. The insights gained from this model are crucial 

for understanding the broader water resource dynamics in Johor, as Johor Bahru often serves 
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as a representative area for the state. Johor's tropical climate, characterized by consistent 

rainfall patterns with minimal regional deviations, further reinforces the applicability of this 

model to the state's overall water management strategies. The water balance model equation 

used is: 

 

Water Balance = Precipitation – Evapotranspiration – Runoff + Inflow from Rivers  (8) 

 

where precipitation is the total amount of water entering the system in the form of rainfall, 

evapotranspiration is the amount of water that leaves the system through evaporation and 

plant transpiration, runoff is the amount of water that flows over the land surface and into 

rivers or storage reservoirs, and inflow from rivers is the additional water entering the system, 

expressed in million cubic (Chow et al. 1988; Thornthwaite and Mather 1955). Besides, Johor 

River Basin, which is central to the water resources of Johor Bahru is used as the catchment 

area which covers area approximately 
22636km .  

A surface runoff coefficient of 0.5 is chosen for Johor Bahru due to its tropical climate, 

which is characterized by frequent and intense rainfall that generates significant runoff. This 

value reflects that half of the total precipitation contributes to the surface runoff, while the rest 

is either absorbed into the ground or lost through evaporation and transpiration. Urbanization 

in Johor Bahru further justifies this coefficient, as impervious surfaces like roads and 

buildings reduce water infiltration and amplify runoff. The high annual rainfall typical of the 

region supports the suitability of this value, ensuring the model accurately captures the 

hydrological dynamics of the area. Studies on tropical urban areas corroborate the use of a 0.5 

runoff coefficient, highlighting its effectiveness in representing the combined influence of 

urban development and regional climatic conditions (Chow et al. 1988). 
 

 
Figure 8: Water balance for Johor Bahru 

 

 

The graph as in Figure 8 shows the water balance for Johor Bahru, derived from an 

analysis of data spanning 30 years. The months of November and December show a 

pronounced peak in water balance, exceeding 1500 mm, influenced by the effects of the 

Northeast Monsoon, which brings heavy rainfall to the area. The excess water during this 

period presents an opportunity to enhance water storage and replenish reservoirs, which are 

essential for addressing water demand during the drier months. However, in the absence of 
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sufficient infrastructure to capture and store this surplus, a significant portion may escape as 

surface runoff, potentially causing flooding in urban and low-lying regions. 

Conversely, February records the lowest water balance in Johor Bahru due to a 

combination of reduced rainfall and increased evapotranspiration. As it marks the tail-end of 

the Northeast Monsoon, the intensity and frequency of rainfall decline significantly compared 

to the peak months of November through January. This decrease in precipitation, coupled 

with rising temperatures and longer daylight hours, leads to higher evaporation and 

transpiration rates. Additionally, soil moisture begins to diminish following the heavy rains of 

previous months, resulting in less water retention. These factors collectively contribute to a 

lower net water gain, making February the driest month in terms of water balance. 

The gradual increase in water balance from July to October reflects a transitional phase 

influenced by Malaysia's climatic patterns. According to the Malaysian Meteorological 

Department (MetMalaysia n.d.), the country experiences two main monsoon seasons: the 

Southwest Monsoon (May to September) and the Northeast Monsoon (November to March). 

Johor Bahru, located in southern Peninsular Malaysia, these transitions are particularly 

evident, with inter-monsoonal periods in April and October bringing variable winds and 

increased rainfall. These climatic shifts significantly impact the water balance in Johor Bahru 

during this time. On the other hand, the sharp declines after the rainy season highlight the 

rapid depletion of water reserves. From the water balance model, it can be seen that periods of 

high-water balance, especially in November and December, elevate the risk of flooding, 

whereas the steep drops during the drier months increase the potential for droughts, negatively 

impacting public health and economic activities. On top of that, agriculture, which depends on 

a stable water supply, experiences decreased crop yields during these dry spells.  

5. Conclusion 

Based on the results obtained, we can conclude that while the GBM model demonstrates high 

predictive accuracy based on the low RMSE value, it did not effectively capture or reflect 

certain underlying patterns or fluctuations in the data. This suggests that although the GBM 

model performs well overall in terms of prediction error, it is not sufficiently sensitive to 

variations in the data, which is important for understanding trends or changes in the system 

being studied. Therefore, further refinement or additional analysis are necessary to improve 

the model’s ability to represent these fluctuations. The results for the water balance model 

highlight the importance of planning for water conservation and storage during periods of 

surplus, especially in November and December, to mitigate the impact of water scarcity 

during the dry months. By accounting for precipitation, evaporation, and runoff, the model 

helps identify potential surplus or deficits in water supply. This information is essential for 

planning water storage, distribution systems, and conservation measures, particularly in 

regions like Johor Bahru that experience both wet and dry seasons. Additionally, knowing the 

water balance supports sustainable water management, ensuring adequate supply during high-

demand periods while minimizing the risk of shortages during dry spells. 
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