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ABSTRACT  

Rough set has been successfully combined with other mathematical frameworks to improve 

attribute reduction. In particular, attribute reduction is essential for processing and analyzing the 

Rough Neutrosophic Decision System. The rough neutrosophic set provides an effective 

framework for managing vagueness, inconsistency and incomplete information. This hybrid 

model allows a more flexible representation of real-world data by incorporating truth, 

indeterminacy and falsity membership functions. This study introduces a novel attribute 

reduction technique based on tolerance relations in the context of rough neutrosophic sets, 

employing rough neutrosophic numbers to express information values. The proposed method 

includes the formation of lower and upper approximations and defines the degree of dependency 

between decision attributes and conditional attributes. An algorithm is developed to implement 

the approach  and a detailed example in coastal erosion is provided to validate its practical 

application. Experimental outcomes demonstrate that the method efficiently identifies relevant 

and non-relevant attributes, thereby enhancing the decision-making process. The proposed 

method not only improves the precision of data but also strengthens the robustness of intelligent 

systems when dealing with complex and uncertain datasets. 
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ABSTRAK  

Set kasar telah berjaya bergabung dengan rangka kerja matematik lain untuk meningkatkan 

proses pengurangan atribut. Khususnya, pengurangan atribut memainkan peranan penting 

dalam pemprosesan dan analisis Sistem Maklumat Set Netrosofik Kasar.Set netrosofik kasar 

menyediakan kerangka kerja yang berkesan untuk menangani kekaburan, ketidakkonsisten dan 

maklumat yang tidak lengkap. Model hybrid ini membolehkan perwakilan data sebenar yang 

lebih fleksibel dengan menggabungkan fungsi keahlian kebenaran, ketidaktentuan and 

kepalsuan. Kajian ini memperkenalkan eknik baru bagi penggurangan atribut berdasarkan 

hubungan toleransi dalam konteks set netrosofik kasar mewakili nilai matlumat. Kaedah yang 

dicadangkan merangkumi pembentukan penghampir bawah dan atas serta mentakrifkan tahap 

pergantungan antara atribut Keputusan dan atribut bersyarat. Satu algoritma dibagunkan untuk 

melaksankan pendekatan ini dan contoh terperinci dalam isu hakisan pantai disediakan untuk 

mengesahkan aplikasi praktikalnya. Hasil eksperimen menunjukkan bahawa kaedah ini secara 

berkesan mengenal pastu atribut yang relevan dan tidak relevan, seterusnya meningkatkan 

proses membuat keputusan. Kaedah yang dicadangkan bukan Sahaja mempertingkatkan 

ketepatan data, tetapi juga mengukuhkan ketahanan system pintar dalam menghadapi set data 

yang kompleks dan tidak menentu. 

 

Kata kunci: Hubungan toleransi; pengurangan atribut; neutrosofik kasar ; hubungan kesamaan  
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1. Introduction 

The need for effective data analysis techniques has increased recently due to the exponential 

growth of data. Attribute reduction, known as feature selection, is a crucial preprocessing step 

in this context and vital for data mining and machine learning. It simplifies data by removing 

irrelevant or redundant features, thus improving computational efficiency and model 

performance. To solve this issue, a variety of attribute reduction methods have been suggested 

and widely implemented. Su et al. (2020) proposed an efficient attribute reduction using rough 

set theory. They utilized chi-square statistics and condition entropy to assess the importance of 

attributes. Their approach integrates both forward and backward selection strategies to guide 

the reduction process effectively. Chebrolu & Sanjeevi (2017) developed a hybrid approach 

integrating the artificial bee colony algorithm that integrates discretization and attribute 

reduction within rough set framework. Liang et al. (2024) later proposed the Incomplete 

Knowledge Attribute Reduction (IKAR) algorithm to address the limitations of traditional 

attribute reduction.  

      Rough set theory, first introduced by Pawlak (1982), offers a strong mathematical basis for 

identifying relevant features in decision systems, particularly those using complete information. 

Attribute reduction in rough sets typically involves two major techniques: indiscernibility 

matrix and evaluation based on attribute significance measures. Skowron & Rauszer (1992) 

defined the discernibility matrix and function as key tools in analyzing information systems. 

These concepts enable the development of algorithms for tasks such as identifying rough 

definability, generating reducts and cores and discovering attribute dependencies. Jensen & 

Shen (2004) introduced semantics-preserving dimensionality reduction to identify the most 

predictive features while retaining the meaning of the data, especially high-dimensional task 

like text and web content classification. The rough set theory’s scope has been expanded to 

facilitate research in intelligent systems that operate under conditions of uncertain, insufficient, 

and incomplete information. Several techniques based on rough set theory have been developed 

to extract decision rules from datasets structured as decision tables (information system). At the 

core of Pawlak’s rough set framework lies the equivalence relation, which underpins the 

formation of lower and upper approximations. Classical rough set models are well-suited for 

analyzing categorical data, practical applications often involve real-valued attributes that 

describe the characteristics of objects interest (Ahmad et al. 2006; Alfares & Duffuaa 2008; 

Gong et al. 2008; Qian et al. 2008). To address this limitation, discretization techniques is 

frequently used to convert continuous data into categorical form before applying attribute 

reduction techniques. However, this transformation can lead to information loss.  

      Fuzzy set is well-suited for representing uncertainty and imprecise data due to its inherent 

flexibility and tolerance for uncertainty (Zadeh 1965). It has been effectively applied across 

various fields, including risk evaluation (Baser et al. 2023), healthcare (Gou 2021) and 

forecasting (Pattanayak et al. 2021). Beyond these traditional applications, fuzzy sets have also 

demonstrated value in emerging areas such as deep learning (Bonanno et al. 2017) and 

topological data analysis (Vasilakakis & Iakovidis 2023). However, in practical decision-

making scenarios, relying on single membership function can be limited due to complexity of 

real-world uncertainty. To address this limitation, Atanassov (1986) introduced intuitionistic 

fuzzy sets as an extension of classical fuzzy sets which include true and false membership. This 

framework, regarded as a subset of context-dependent fuzzy sets, effectively addresses certain 

limitations inherent in conventional fuzzy set theory. Neutrosophic sets, proposed by 

Smarandache (2006), generalize intuitionistic fuzzy sets by introducing a third independent 

component to represent indeterminacy addressing challenges that fuzzy logic could not 

adequately resolve (Zhang et al. 2010). In contrast to the two memberships of intuitionistic 

fuzzy sets, neutrosophic sets defined as truth, falsity, and indeterminacy membership. 
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Neutrosophic theory enhances the capacity for modelling uncertainty and has demonstrated 

applicability in various domains, including optimization (Han et al. 2020), data mining (Yuan 

et al. 2021), decision support systems (Yazdani et al. 2021) and medical diagnosis (Şahin & 

Karabacak 2020). 

Attribute reduction methods have also been adapted for fuzzy and rough fuzzy systems. 

Dubois and Parade (1990) introduced a fuzzy rough set (FRS) and rough fuzzy set (RFS) 

framework, enabling attribute reduction directly on numerical data. This framework has since 

been the basis for developing reduction algorithms that leverage various fuzzy rough set-based 

measures for handling numeric attributes without discretization. Besides, the concepts RFS and 

FRS have been further developed by replacing crisp binary relation within the universe with a 

fuzzy relation (Kondo 2006; Lin 1992). Su (2020) developed novel uncertainty measures and 

proposed a feature selection algorithm based on fuzzy neighborhood multigranulation rough 

sets. Sun (2021) proposed introduces a multilabel neighborhood rough sets-based uncertainty 

measures which are maximum relevance-minimum redundancy (mRMR), and heuristic 

algorithm which achieves better classification performance and select more relevant genes 

across various datasets. Furthermore, several studies have extended incremental algorithms to 

address challenges posed by incomplete dynamic decision tables. For instance, Giang et al. 

(2021) designed hybrid incremental algorithms utilizing tolerance sets to manage missing data 

within dynamic decision tables. However, the effectiveness of attribute reduction methods built 

on the FRS model is often compromised when dealing with high-noise datasets or cases of low 

classification accuracy, as demonstrated by Hung and Yang (2007). These shortcomings have 

motivated researchers to explore more robust alternatives. 

In recent studies, the intuitionistic fuzzy rough set (IFRS) model has been investigated as a 

means to improve attribute reduction process. By incorporating non- membership functions, 

IFRS enhances the system’s ability to manage noise, enabling better classification of uncertain 

objects (Huang et al. 2014). As a result, IFRS-based reduction algorithms have shown superior 

robustness and effectiveness compared to traditional FRS-based methods, particularly in noisy 

or low-performance scenarios. Singh et al. (2020) defined novel mechanisms for attribute 

reduction in incomplete information system within the framework of IFRS, including the 

definition of intuitionistic fuzzy tolerance relation and development of lower and upper 

approximations operators. They also presented  a greedy algorithm  and a practical example to 

illustrate their approach. Nguyen et al. (2021) proposed a distance measure in the intuitionistic 

fuzzy set (IFS) model and introduced IFDBAR algorithm for reduct computation in decision 

tables. However, one limitation of IFS-based attribute reduction method particularly employing 

filter strategies, is their relatively slow processing speed. 

The rough neutrosophic set, introduced by Broumi et al. (2014) was developed to address 

vagueness, uncertainty, imprecise, inconsistent and incomplete present in datasets. Given that 

human decision-making often depends on expert judgement  which can be unreliable. This set 

offers to capture and process imperfect knowledge. Despite its potential, the integration of 

rough set with neutrosophic set theory has seen limited exploration in the field of attribute 

reduction. (Tiwari et al. 2018) claimed that novel approach of attribute reduction employs a 

tolerance-based intuitionistic fuzzy rough set approach. In their work, they defined lower and 

upper approximations based on tolerance relations and calculated the degree of dependency of 

decision attributes on the set of conditional attributes. Their algorithm was applied to a sample 

data set and compared the results with tolerance-based fuzzy rough set method. Ab Ghani et al. 

(2022) proposed approximation constructs for rough neutrosophic set using tolerance relations. 

Their research emphasized type-1 of two granulation and multi-granulation models such as T1-

TGRNS and T1-MGRNS and explored their properties in terms of lower and upper 

approximations. Wang et al. (2023) proposed a multi-scale single-valued neutrosophic system 

utilizing a dominance relation, which leverages relative distance preference degrees. They 
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detailed the procedures for computing test and decision costs using a rough set-based risk cost 

formula and identified optimal scale combinations that minimize total system cost. 

This paper introduces a new method that combines tolerance-based relations with the rough 

neutrosophic set for attribute reduction. First, it introduces novel formulations for lower and 

upper approximations by replacing the traditional indiscernibility relation with  a tolerance 

relation on similarity between two objects. Secondly, an algorithm is proposed to identify the 

reduct set within a rough neutrosophic decision system. The proposed method effectively 

addresses vagueness, uncertainty and incompleteness by integrating the rough set model with 

the neutrosophic set model. In addition, the proposed algorithm evaluates the degree of 

dependency between condition and decision attributes to derive a minimal reduct. An 

illustrative example is provided using coastal erosion data to demonstrate the method 

practically and improved performance. 

2. Rough Neutrosophic Sets 

In order to build the theoretical foundation required for the development of tolerance-based 

rough neutrosophic framework. This section reviews basic definitions of neutrosophic sets, 

such as single-valued neutrosophic relations and rough neutrosophic sets.  

 

Definition 2.1. (Smarandache 2006) Let 𝑋 be a universal set. A neutrosophic set 𝑉 defined on 

𝑋 is expressed as: 

 

𝑉 = {〈𝑥, 𝑇𝑉(𝑥), 𝐼𝑉(𝑥), 𝐹𝑉(𝑥)〉: 𝑥 ∈ 𝑋}                                                                                                 (1) 
 

The function 𝑇𝑉 , 𝐼𝑉 , 𝐹𝑉  are real-valued mappings from 𝑋  to the extended intervals ]-0: 1+[, 

representing the degrees of truth, indeterminacy, and falsity respectively. There are no 

constraints on the sum of these values from any element 𝑥 ∈ 𝑋. 

Neutrosophic set offer a flexible and comprehensive structure for capturing data 

characterized by inconsistency, imprecision and incomplete information. The truth and falsity 

components relate to how strongly an element belongs or does not belong to the set, whereas 

the indeterminacy degree quantifies uncertainty independently of the other two. All the degrees 

fall within the standard interval [0,1]. 
 

Definition 2.2. (Yang et al. 2016) A single valued neutrosophic relation (SVNS) ℛ on the 

Cartesian product 𝑈 × 𝑈 defined as: 

 

               ℛ = {〈(𝑥, 𝑦), 𝜂ℛ(𝑥, 𝑦), 𝛽ℛ(𝑥, 𝑦), 𝜐ℛ(𝑥, 𝑦)〉|(𝑥, 𝑦) ∈ 𝑈 × 𝑈}                                                (2) 

 

The functions 𝜂ℛ, 𝛽ℛ ,  and 𝜐ℛ  map from 𝑈 × 𝑈  to the interval [0,1]  representing the truth 

membership, indeterminacy membership and falsity-membership degrees respectively, for each 

pair of (𝑥, 𝑦) in the universe 𝑈. 

 

Definition 2.3. A rough neutrosophic binary relation between objects 𝑥𝑖, 𝑥𝑗 ∈ 𝑈, denoted by 

〈𝜂𝑉(𝑥𝑖, 𝑥𝑗), 𝛽𝑉(𝑥𝑖, 𝑥𝑗), 𝜐𝑉(𝑥𝑖, 𝑥𝑗)〉  𝑥𝑖, 𝑥𝑗 ∈ 𝑈  is classified as a rough neutrosophic tolerance 

relation if it satisfies the properties of reflexive and symmetric. 

 

Definition 2.4. (Ab Ghani et al. 2022) Let 𝕊 = 〈𝑈, 𝐴〉  represent a rough neutrosophic 

information system and let 𝐹 be neutrosophic set defined over the universe 𝑈, where 𝑎 ⊆ 𝐴. 
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The lower and upper approximation of 𝐹 ⊆ 𝑈 with respect to a covering based on tolerance 

relation are defined as follows: 

 

ℒ(𝐹): = ⋃{[𝑥]𝑡𝑜𝑙(𝛼)
𝐹 : 𝑥 ∈ 𝑈, [𝑥]𝑡𝑜𝑙(𝛼)

𝐹 ⊆ 𝐹⋀𝑦 ∈ [𝑥]𝑡𝑜𝑙(𝛼)
𝐹 } 

           = {< 𝑥 ∈ 𝑈, 𝜂ℒ(𝐹)(𝑥), 𝛽ℒ(𝐹)(𝑥), 𝜈ℒ(𝐹)(𝑥) >: ∀𝑦 ∈ 𝑈, 〈𝑥, 𝑦〉 ∈ 𝑡𝑜𝑙(𝛼)                  (3)  

 

𝒰(𝐹): = ⋃{[𝑥]𝑡𝑜𝑙(𝛼)
𝐹 : 𝑥 ∈ 𝑈, [𝑥]𝑡𝑜𝑙(𝛼)

𝐹 ∩ 𝐹 ≠ ∅}  

            = {< 𝑥 ∈ 𝑈, 𝜂𝒰(𝐹)(𝑥), 𝛽𝒰(𝐹)(𝑥), 𝜈𝒰(𝐹)(𝑥) >: ∃𝑦 ∈ 𝑈, 〈𝑥, 𝑦〉 ∈ 𝑡𝑜𝑙(𝛼)               (4) 

 

Definition 2.5. (Broumi et al. 2014) Let 𝑈 be a non-empty set and let 𝑄 denote a tolerance 

relation defined on 𝑈. Suppose 𝑉 is a neutrosophic set on 𝑈 characterized by three membership 

functions which are 𝜂𝑣 is the truth-membership function, 𝛽𝑣  is the indeterminacy-membership 

function, and 𝜈𝑣 is the falsity-membership function. The lower and upper approximations of 𝑉 

under the approximation (𝑈,𝑄) denoted by 𝑁(𝑉) and 𝑁(𝑉) respectively, are defined as follows: 

 

𝑁(V) = {〈𝑥, 𝜂𝑁(V)(𝑥), 𝛽𝑁(V)(𝑥), 𝜈𝑁(V)(𝑥)〉|𝑦 ∈ [𝑥]𝑄 , 𝑥 ∈ 𝑈}                                        (5) 

𝑁(V) = {〈𝑥, 𝜂𝑁(V)(𝑥), 𝛽𝑁(V)(𝑥), 𝜈𝑁(V)(𝑥)〉|𝑦 ∈ [𝑥]𝑄 , 𝑥 ∈ 𝑈}                                        (6) 

 
where 

 

𝑇𝑁(V)(𝑥) =∨𝑦∈[𝑥]𝑄
𝑇𝑉(𝑦), 𝐼𝑁(𝑉)(𝑥) =∧𝑦∈[𝑥]𝑄

𝐼𝑉(𝑦), 𝐹𝑁(𝑉)(𝑥) = ∧𝑦∈[𝑥]𝑄
𝐹𝑉(𝑦), 

 

𝑇𝑁(𝑉)(𝑥) =∧𝑦∈[𝑥]𝑄
𝑇𝑉(𝑦), 𝐼𝑁(𝑉)(𝑥) =∨𝑦∈[𝑥]𝑄

𝐼𝑉(𝑦), 𝐹𝑁(𝑉)(𝑥) = ∨𝑦∈[𝑥]𝑄
𝐹𝑉(𝑦) 

 

The symbol ∨ and ∧ denote the maximum and minimum operators across the tolerance class 
[𝑥]𝑄. The functions 𝑇𝑉(𝑦), 𝐼𝑉(𝑦), and  𝐹𝑉(𝑦) represent the truth-membership, indeterminacy-

membership, and falsity-membership of element 𝑦 in the neutrosophic set 𝑉. These degrees are 

bounded within the interval [0,1], ensuring the following conditions hold: 

 

0 ≤ 𝑇𝑁(𝑉)(𝑥) + 𝐼𝑁(𝑉)(𝑥) + 𝐹𝑁(𝑉)(𝑥) ≤ 3  

 

and  

 

0 ≤ 𝑇𝑁(𝑉)(𝑥) + 𝐼𝑁(𝑉)(𝑥) + 𝐹𝑁(𝑉)(𝑥) ≤ 3 

 

The lower and upper rough neutrosophic approximation operators are denoted as 𝑁(𝑉) and 

𝑁(𝑉). The pair of  𝑁(𝑉), 𝑁(𝑉) defines the rough neutrosophic set in (𝑈, 𝑄). Further logical 

properties and structural characteristics of such sets have been explored by  Zainal et al. (2021).  

 

Definition 2.6. A rough neutrosophic information system (𝑅𝑁𝐼𝑆) is formally defined as a 

quadruple 𝑆 = (𝑈, 𝐶 ∪ 𝐷, 𝑉, 𝑓), where 𝑈 is called universe consisting of a non-empty and finite 

set of objects, 𝐶 represents a finite conditional attribute, 𝐷 = {𝑑} is a single set containing the 
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decision attribute 𝑑 , with the condition that 𝐶 ∩ 𝐷 = ∅,  𝑉  denotes the set of all rough 

neutrosophic values, composed of 𝑉 = 𝑉1 ∪ 𝑉2,  where 𝑉1  and 𝑉2  are  the value domains 

corresponding to the condition and decision attribute, respectively. The information function 𝑓 

is a map from 𝑈 × (𝐶 ∪ 𝐷)  onto 𝑉,  such that 𝑓(𝑥, 𝑐)  and 𝑓(𝑥, 𝑑)  are rough neutrosophic 

values, represented as 𝑓(𝑥, 𝑐) = 〈𝜂𝑐(𝑥), 𝛽𝑐(𝑥), 𝜈𝑐(𝑥)〉  and 𝑓(𝑥, 𝑑) = 〈𝜂𝑑(𝑥), 𝛽𝑑(𝑥), 𝜈𝑑(𝑥)〉 . 

Thus,  𝑓(𝑥, 𝑐) refers to the rough neutrosophic value of object 𝑥 under the condition attribute 

𝑐, while 𝑓(𝑥, 𝑑) represent rough represents  rough neutrosophic of 𝑥 under decision attribute 

𝑑. 

 

Example 1 A rough neutrosophic decision system is illustrated in Table 1, where the universe 

is given by  𝑈 = {𝑥1, 𝑥2, … , 𝑥6} and the set of conditional attributes is 𝐶 = {𝑐1, 𝑐2, 𝑐3, 𝑐4, 𝑐5}. Each 

object is described by rough neutrosophic values for the conditional attributes, and a 

corresponding decision class denoted by 𝑑. 

Table 1: Rough neutrosophic decision system 

𝑈 𝑐1 𝑐2 𝑐3 𝑐4 𝑐5 𝑑 

𝑥1 〈0.2,0.4,0.2〉 〈0.1,0.7,0.3〉 〈0.2,0.6,0.1〉 〈0.4,0.6,0.2〉 〈0.2,0.8,0.2〉 1 

𝑥2 〈0.1,0.7,0.3〉 〈0.1,0.8,0.3〉 〈0.3,0.6,0.1〉 〈0.5,0.2,0.3〉 〈0.2,0.7,0.2〉 2 

𝑥3 〈0.1,0.8,0.3〉 〈0.1,0.8,0.3〉 〈0.2,0.8,0.2〉 〈0.5,0.4,0.2〉 〈0.4,0.6,0.2〉 1 

𝑥4 〈0.1,0.9,0.1〉 〈0.6,0.3,0.3〉 〈0.2,0.7,0.2〉 〈0.2,0.8,0.2〉 〈0.4,0.6,0.2〉 1 

𝑥5 〈0.4,0.6,0.3〉 〈0.2,0.6,0.1〉 〈0.2,0.8,0.2〉 〈0.2,0.8,0.2〉 〈0.2,0.8,0.2〉 2 

𝑥6 〈0.4,0.6,0.2〉 〈0.2,0.6,0.1〉 〈0.2,0.8,0.2〉 〈0.2,0.4,0.3〉 〈0.2,0.8,0.2〉 1 

 

In practical applications, decision systems often consist of high-dimensional data, which can 

pose challenges for analysis and computation. To address this, the following sections introduce 

rough neutrosophic techniques for dimensionality reduction by employing feature selection 

techniques aimed at identifying the most informative attributes. 

3. Tolerance-Based Rough Neutrosophic Set Approach for Attribute Reduction 

In this section, we define the similarity between pairs of objects based on attributes or subsets 

of attributes. To enhance classification accuracy, we introduce a tolerance relation within the 

rough neutrosophic set (RNS) framework, incorporating threshold values applied to 

membership, indeterminacy, and non-membership values. 

Rough neutrosophic decision system (RNDS) relies on equivalence relations to partition of 

𝑈, which can limit the effectiveness of knowledge discovery. To address this constraint, we 

propose a similarity degree that captures the similarity degree of rough neutrosophic values. 

Inspired by the similarity model proposed by Feng and Li (2013), this work generalizes the 

concept to the tolerance-based rough neutrosophic environment, as detailed in the following. 

 

Definition 3.1. Assume 𝑅𝑁𝐷𝑆 = (𝑈, 𝐶 ∪ 𝐷, 𝑉, 𝑓), for any 𝑥𝑖, 𝑥𝑗 ∈ 𝑈, 𝑐𝑘 ∈ 𝐶, the two rough 

neutrosophic values 𝑓(𝑥𝑖, 𝑐𝑘) = 〈𝜂𝑐𝑘
(𝑥𝑖), 𝛽𝑐𝑘

(𝑥𝑖), 𝑣𝑐𝑘
(𝑥𝑖)〉  and 𝑓(𝑥𝑗, 𝑐𝑘) =

〈𝜂𝑐𝑘
(𝑥𝑗), 𝛽𝑐𝑘

(𝑥𝑗), 𝑣𝑐𝑘
(𝑥𝑗)〉, the similarity degree between 𝑥𝑖 and 𝑥𝑗 with respect to attribute 𝑐𝑘 

is defined using a weighted Euclidean distance as follows: 

 
𝑠𝑖𝑚𝑐𝑘

(𝑥𝑖 , 𝑥𝑗) = 1 −

                                 √𝛼 (𝜂𝑐𝑘
(𝑥𝑖) − 𝜂𝑐𝑘

(𝑥𝑗))
2

+ 𝜔 (𝛽𝑐𝑘
(𝑥𝑖) − 𝛽𝑐𝑘

(𝑥𝑗))
2

+ 𝛾 (𝑣𝑐𝑘
(𝑥𝑖) − 𝑣𝑐𝑘

(𝑥𝑗))
2
            

(7)
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where 𝛼, 𝜔, 𝛾  are weighting factors and  𝜂𝑐𝑘
(𝑥𝑖) , 𝛽𝑐𝑘

(𝑥𝑖)  and 𝑣𝑐𝑘
(𝑥𝑖)  are membership, 

indeterminacy, and non-membership of an object 𝑥𝑖. 

 

Remark 3.1. The parameter values in 𝑅𝑁𝐷𝑆 are computed to represent object characteristics 

are determined based on user requirements, subject to the following constraints: 

 

1. 𝜂 ≥ 𝜈 > 𝛽 

2. 0 ≤ 𝜂, 𝜈, 𝛽 ≤ 1  
3. 𝜂 + 𝛽 + 𝜈 = 1 

 

Property 3.1  

Let 𝑅𝑁𝐷𝑆 = (𝑈, 𝐶 ∪ 𝐷, 𝑉, 𝑓) for any 𝑥𝑖,𝑥𝑗 ∈ 𝑈, 𝑎 ∈ 𝐶, the following condition holds: 

1. 0 ≤ 𝑠𝑖𝑚𝑎(𝑥𝑖, 𝑥𝑗) ≤ 1 

2. 𝑠𝑖𝑚𝑎(𝑥𝑖, 𝑥𝑗) = 𝑠𝑖𝑚𝑎(𝑥𝑗, 𝑥𝑖) 

3. 𝑓(𝑥𝑖, 𝑎) = 𝑓(𝑥𝑗, 𝑎) ⇔ 𝑠𝑖𝑚𝑎(𝑥𝑖, 𝑥𝑗) = 1 

4. Consider 𝑓(𝑥𝑖, 𝑎) = 〈1,0〉 , 𝑓(𝑥𝑗, 𝑎) = 〈0,1〉  and let 𝛼 = 𝜔 = 0.5 , Under these 

conditions, the similarity measure is 𝑠𝑖𝑚𝑎(𝑥𝑖, 𝑥𝑗) = 0  indicating that 𝑥𝑖 and 𝑥𝑗  are 

completely dissimilar in term of 𝑎. 

 

Definition 3.2 Let 𝑅𝑁𝐷𝑆 = (𝑈, 𝐶 ∪ 𝐷, 𝑉, 𝑓) be a rough neutrosophic decision system and let 

𝐴 ⊆ 𝐶 be a subset of conditional attributes. For threshold 𝛿 ∈ [0,1], a  𝛿- similarity relation 𝒯𝛿 

in the 𝑅𝑁𝐷𝑆 is defined as:  

 

𝒯𝛿(𝐴) = {(𝑥𝑖, 𝑥𝑗) ∈ 𝑈 × 𝑈: 𝑠𝑖𝑚𝑎(𝑥𝑖, 𝑥𝑗) ≥ 𝛿, 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑎 ∈ 𝐴} 

 

This relation 𝒯𝛿 is reflexive and symmetric, but not transitive. 

 

To evaluate the similarity relation between two objects with respect to a 𝑀 ⊆ 𝐶, the relation 

is extended as follows:  

 

(𝑥𝑖 , 𝑥𝑗) ∈ 𝑠𝑖𝑚𝑀
𝛿  if and only if ∏ 𝑠𝑖𝑚𝑓𝑓∈𝑀 (𝑥𝑖, 𝑥𝑗) ≥ 𝛿                          (8) 

                                             

𝛿 is similarity threshold where 𝛿 ∈ [0,1]. It determines the required degree of similarity for 

inclusion under the tolerance relation. 

 

Definition 3.3 Given the similarity relation 𝑠𝑖𝑚𝑀
𝛿 , the tolerance relation class of an object 𝑥𝑖 ∈

𝑈 is defined as: 

 

𝑠𝑖𝑚𝑀
𝛿 = {𝑥𝑗 ∈ 𝑈|(𝑥𝑖, 𝑥𝑗) ∈ 𝑠𝑖𝑚𝑀

𝛿 }                                                         (9) 

 

This class includes all objects 𝑥𝑗 that are sufficiently similar to 𝑥𝑖 under the specified attribute 

subset 𝑀 and threshold 𝛿. 

 

Definition 3.4 Given a knowledge representation system 𝑅𝑁𝐷𝑆 = (𝑈, 𝐶 ∪ 𝐷, 𝑉, 𝑓), and let 

𝑋 ⊆ 𝑈 be lower and upper approximation respectively are  
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ℒ𝑀
𝛿 (𝐹) = {𝑥𝑖: 𝑆𝐼𝑀𝑀

𝛿 (𝑥𝑖) ⊆ 𝑋}   

                          = {〈𝑥 ∈ 𝑈, 𝜂𝑁(V)(𝑥), 𝛽𝑁(V)(𝑥), 𝜐𝑁(V)(𝑥)〉: 𝑦 ∈ 𝑈, 〈𝑥, 𝑦〉 ∈ 𝑡𝑜𝑙(𝛼)},                    (10) 

                                                                         

𝒰𝑀
𝛿 (𝐹) = {𝑥𝑖: 𝑆𝐼𝑀𝑀

𝛿 (𝑥𝑖)⋂𝑋 ≠ 𝜙}   

                          = {〈𝑥 ∈ 𝑈, 𝜇𝑁(V)(𝑥), 𝑣𝑁(V)(𝑥), 𝜔𝑁(V)(𝑥)〉: 𝑦 ∈ 𝑈, 〈𝑥, 𝑦〉 ∈ 𝑡𝑜𝑙(𝛼)}.              (11) 

 

The pair (ℒ𝑀
𝛿 (𝐹), 𝒰𝑀

𝛿 (𝐹))  is referred to as a rough neutrosophic toleration set. These 

approximations follow the same conceptual foundation as in the classical RNS. Let 𝑍 be a set 

of attributes generating the tolerance relation over 𝑈.  
 

Definition 3.5 Assume 𝑅𝑁𝐷𝑆 = (𝑈, 𝐶 ∪ 𝐷, 𝑉, 𝑓). The Z-positive region with respect to 𝑀, 

denoted by 

  

 𝑝𝑜𝑠𝑀
𝛿 (𝑍) = ⋃ ℒ𝑀

𝛿 (𝐹)𝑋∈𝑈/𝑍                                               (12) 

                                                                                                                                                                             

where 𝑍 ⊆ 𝐶 and 𝑍 = {𝑑}. 

 

Definition 3.6 The dependency degree 𝑍 to 𝑀is determined by the ratio of 𝑝𝑜𝑠𝑀
𝛿 (𝑍) to |𝑈|: 

 

Γ𝑀
𝛿 (𝑍) =

|𝑝𝑜𝑠𝑀
𝛿 (𝑍)|

|𝑈|
                                                          (13) 

                                                                                                                                                                                                                                                                             

The role of Γ𝑀
𝛿 (𝑍), serves as key indicator of how well the attribute set 𝑀, which is as 

important as attributes 𝑀 in approximating decision 𝑍. During the attribute reduction process, 

attributes are added incrementally to the current subset, and at each step, the change of degree 

of dependency is evaluated. If including an additional attribute does not increase the 

dependency degree, the process is terminated, and the resulting subset is identified as the reduct. 

The formulation extends Pawlak’s dependency model from classical rough sets to RNS; thereby 

generalizing it to support more complex, uncertain environments over arbitrary universe. 

 

Theorem 3.1. Let (𝑈, 𝐶 ∪ 𝐷, 𝑉𝑅𝑁𝑆,𝑅𝑁𝑆) be RNDS. Let 𝑍 ⊆ 𝐶 and 𝑋 ⊆ 𝑈, then ℒ𝑀
𝛿 (𝐹) ⊆ 𝑋 ⊆

 𝒰𝑀
𝛿 (𝐹). 

 

Proof. 

Considering that 𝑦 ∈ 𝑠𝑖𝑚𝑀
𝛿 (𝑦).  Hence, 𝑦 ∈ 𝑋  producing ℒ𝑀

𝛿 (𝐹) ⊆ 𝑋 . Assume 𝑦 ∈ 𝑋.  From 

the point 𝑦 ∈ 𝑠𝑖𝑚𝑀
𝛿 (𝑦) ⟶ |𝑠𝑖𝑚𝑀

𝛿 (𝑦)⋂𝑋 ≠ 𝜙 ⟶ 𝑦 ∈  𝒰𝑀
𝛿 (𝐹) ⟶ 𝑋 ⟶ 𝒰𝑀

𝛿 (𝐹) , ℒ𝑀
𝛿 (𝐹) ⊆

𝑋 ⊆  𝒰𝑀
𝛿 (𝐹) is produced. □ 

 

Theorem 3.2. Assume (𝑈, 𝐶 ∪ 𝐷, 𝑉𝑅𝑁𝑆,𝑅𝑁𝑆) be an RNDS. Let 𝑀1 ⊆ 𝑀2 ⊆ 𝐶 and 𝑋 ⊆ 𝑈, then  

1. ℒ𝑀1

𝛿 (𝐹) ⊆ ℒ𝑀2

𝛿 (𝐹) 

2. 𝒰𝑀1

𝛿 (𝐹) ⊆ 𝒰𝑀2

𝛿 (𝐹) 

 

Proof. 

1. Assume 𝑦 ∈ ℒ𝑀1

𝛿 (𝐹) then, 𝑠𝑖𝑚𝑀1

𝛿 (𝑦) ⊆ 𝑋, So 𝑀1 ⊆ 𝑀2 ⟶  𝑠𝑖𝑚𝑀2

𝛿 (𝑦) ⊆

𝑠𝑖𝑚𝑀1

𝛿 (𝑦). Hence, 𝑠𝑖𝑚𝑀2

𝛿 (𝑦) ⊆ 𝑋 ⟶ 𝑦 ∈ ℒ𝑀2

𝛿 (𝐹). Therefore, ℒ𝑀1

𝛿 (𝐹) ⊆ ℒ𝑀2

𝛿 (𝐹). 
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2. Assume 𝑦 ∈ 𝒰𝑀2

𝛿 (𝐹),  then 𝑠𝑖𝑚𝑀2

𝛿 ∩ 𝑋 ≠ 𝜙 , So 𝑀1 ⊆ 𝑀2 ⟶  𝑠𝑖𝑚𝑀2

𝛿 (𝑦) ⊆

𝑠𝑖𝑚𝑀1

𝛿 (𝑦)  Hence, 𝑠𝑖𝑚𝑀1

𝛿 ∩ 𝑋 ≠ 𝜙 ⟶ 𝑦 ∈ 𝒰𝑀1

𝛿 (𝐹).  Therefore, 𝒰𝑀2

𝛿 (𝐹) ⊆

𝒰𝑀1

𝛿 (𝐹).  □ 

 

Theorem 3.3 Assume (𝑈, 𝐶 ∪ 𝐷, 𝑉𝑅𝑁𝑆,𝑅𝑁𝑆) be an RNDS. Let 𝑀 ⊆ 𝐶, 𝛿1 ≤ 𝛿2  and 𝑋 ⊆ 𝑈, 
then 

1. ℒ𝑀
𝛿1(𝐹) ⊆ ℒ𝑀

𝛿2(𝐹) 

2. 𝒰𝑀
𝛿1(𝐹) ⊆ 𝒰𝑀

𝛿2(𝐹) 

 

Proof. 

1. Assume ℒ𝑀
𝛿1(𝐹), then 𝑠𝑖𝑚𝑀

𝛿1(𝑦) ⊆ 𝑋. If 𝑧 ∈ 𝑠𝑖𝑚𝑀
𝛿2(𝑦), then (𝑦, 𝑧) ∈ 𝑠𝑖𝑚𝑀

𝛿2(𝑦) ↔
∏ 𝑠𝑖𝑚𝑎𝑎∈𝑀 (𝑦, 𝑧) ≥ 𝛿2 ↔ ∏ 𝑠𝑖𝑚𝑎𝑎∈𝑀 (𝑦, 𝑧) ≥ 𝛿1𝛿2 ≥ 𝛿1 ↔ (𝑦, 𝑧) ∈

𝑠𝑖𝑚𝑀
𝛿1(𝑦) ↔ 𝑧 ∈ 𝑠𝑖𝑚𝑀

𝛿1(𝑦) → 𝑠𝑖𝑚𝑀
𝛿2(𝑦) ⊆ 𝑠𝑖𝑚𝑀

𝛿1(𝑦) → 𝑠𝑖𝑚𝑀
𝛿2 ⊆ 𝑋 ⟶ 𝑦 ∈

ℒ𝑀
𝛿2(𝐹). Therefore, ℒ𝑀

𝛿1(𝐹) ⊆ ℒ𝑀
𝛿2(𝐹) 

2. Assume 𝒰𝑀
𝛿2(𝐹) , then 𝑠𝑖𝑚𝑀

𝛿2(𝑦) ∩ 𝑋 ≠ 𝜙. 𝑠𝑖𝑚𝑀
𝛿2(𝑦) ⊆ 𝑠𝑖𝑚𝑀

𝛿1(𝑦) → 𝑠𝑖𝑚𝑀
𝛿1(𝑦) ∩

𝑋 ≠ 𝜙 → 𝑦 ∈ 𝒰𝑀
𝛿1(𝐹). Therefore, 𝒰𝑀

𝛿2(𝐹) ⊆ 𝒰𝑀
𝛿1(𝐹). □                                        

4. Algorithm for Tolerance-Based Rough Neutrosophic Reduction 

This section presents an attribute reduction algorithm designed to identify a reduct based on 

tolerance relation and considering the degree of dependency denoted by Γ𝑀
𝛿 (𝑍).  The algorithm 

begins with a null set and sequentially incorporated attributes, seeking the maximum increase 

in dependency on the decision attribute. This process produces the highest values for the dataset, 

with a value of 1 in the case of consistent system. This algorithm eliminates exhaustive 

evaluation of all potential subsets of conditional attributes owing to the minimal reduct property 

of the decision system. The proposed reduct algorithm proceeds as follows: 

Step 1: Construct the original information system into RNS decision table as illustrated in 

Example 1. 

 

Step 2: Calculate the rough neutrosophic tolerance relation between each pair of objects based 

conditional attributes as defined in Definition 3.1. 

 

Step 3: Determine the lower and upper approximation of set using RNS tolerance classes 

corresponding to identical decision classes, as defined in Definition 3.2. 

 

Step 4: Compute the positive region and degree of dependency of 𝑑  for each conditional 

attribute. 

 

Step 5: Select the attribute that yields the highest condition attribute for degree of dependency; 

this attribute is designated as the first reduct. 

 

Step 6: Add other attributes to obtain a new reduct set and calculate the degree of dependency 

of conditional attributes. 
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Step 7: Repeat Step 5 and 6. If the inclusion of futher attributes does not lead to an increase in 

the degree of dependency compared to the previous iteration. The process is halted and the 

current set is declared the final reduct. 

5. Illustrative Example 

The key factors contributing to coastal erosion are adapted from the study by (Luo et al. 2013). 

Based on their findings, six significant attributes or condition of coastal erosion are storm surge 

(𝑐1), hydrodynamic wave and current (𝑐2), imbalance sediment supply(𝑐3), sea level rise(𝑐4) 

and sand mining activities (𝑐5). 

Table 2 outlines the coastal erosion decision system where the universe is defined as 𝑈 =
{𝑥1, 𝑥2, 𝑥3, 𝑥4, 𝑥5, 𝑥6}  and the corresponding conditional attribute set is given by 𝐶 =
{𝑐1, 𝑐2, … , 𝑐6}. 

Table 2: Coastal erosion decision system 

𝑼 𝒄𝟏 𝒄𝟐 𝒄𝟑 𝒄𝟒 𝒄𝟓 𝒄𝟔 𝒅 

𝑥1 〈0.32,0.48,0.20〉 〈0.32,0.48,0.20〉 〈0.80,0.00,0.10〉 〈0.64,0.16,0.30〉 〈0.32,0.48,0.20〉 〈0.16,0.64,0.30〉 1 

𝑥2 〈0.48,0.32,0.20〉 〈0.80,0.00,0.10〉 〈0.48,0.32,0.20〉 〈0.64,0.16,0.30〉 〈0.16,0.64,0.30〉 〈0.16,0.64,0.30〉 0 

𝑥3 〈0.64,0.16,0.30〉 〈0.32,0.48,0.20〉 〈0.32,0.48,0.20〉 〈0.48,0.32,0.20〉 〈0.80,0.00,0.10〉 〈0.80,0.00,0.10〉 1 

𝑥4 〈0.80,0.00,0.10〉 〈0.64,0.16,0.30〉 〈0.16,0.64,0.30〉 〈0.80,0.00,0.10〉 〈0.48,0.32,0.20〉 〈0.32,0.48,0.20〉 0 

𝑥5 〈0.16,0.64,0.30〉 〈0.80,0.00,0.10〉 〈0.64,0.16,0.30〉 〈0.32,0.48,0.20〉 〈0.32,0.48,0.20〉 〈0.48,0.32,0.20〉 0 

𝑥6 〈0.48,0.32,0.20〉 〈0.48,0.32,0.20〉 〈0.64,0.16,0.30〉 〈0.16,0.64,0.30〉 〈0.64,0.16,0.30〉 〈0.64,0.16,0.30〉 1 

 

 

Step 1: Begin by constructing the coastal erosion decision system, as illustrated in Table 2. 

 

Step 2: Calculate the rough neutrosophic tolerance relation between two objects concerning 

conditional attributes. Utilize a tolerance based RNS for attribute selection. The transformed 

decision system is obtained using indeterminacy as 0.2 (refer to Table 2). The decision classes 

of decision systems are defined as follows: 

 

𝑈/𝑍={{𝑥1, 𝑥3, 𝑥6}, {𝑥2, 𝑥4, 𝑥5}}. 

 

Based on the weighting factors 𝛼 = 0.4, 𝜔 = 0.2, 𝛾 = 0.4, and 𝛿 = 0.8, the tolerance class for 

attribute set 𝑐1 is measured using the similarity measure:  

 

𝑈/𝑠𝑖𝑚𝑐1
𝛿 = {{𝑥1, 𝑥2, 𝑥6}, {𝑥1, 𝑥5}, {𝑥2, 𝑥3, 𝑥6}, {𝑥3, 𝑥4}}. 

 

Similarly, several tolerance classes for other attributes are expressed as  

 

𝑈/𝑠𝑖𝑚𝑐2
𝛿 = {{𝑥1, 𝑥3, 𝑥6}, {𝑥2, 𝑥4, 𝑥5}} 

𝑈/𝑠𝑖𝑚𝑐3
𝛿 = {{𝑥1, 𝑥5, 𝑥6}, {𝑥2, 𝑥3}, {𝑥2, 𝑥5, 𝑥6}, {𝑥3, 𝑥4}} 

𝑈/𝑠𝑖𝑚𝑐4
𝛿 = {{𝑥1, 𝑥2, 𝑥3}, {𝑥1, 𝑥2, 𝑥4}, {𝑥3, 𝑥5}, {𝑥5, 𝑥6}} 

𝑈/𝑠𝑖𝑚𝑐5
𝛿 ={{𝑥1, 𝑥2}, {𝑥1, 𝑥4, 𝑥5}, {𝑥3, 𝑥6}, {𝑥4, 𝑥6}} 

𝑈/𝑠𝑖𝑚𝑐6
𝛿 ={{𝑥1, 𝑥2, 𝑥4}, {𝑥3, 𝑥5}, {𝑥4, 𝑥5}{𝑥5, 𝑥6}} 
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Step 3: The lower approximation of decision  classes for attribute set 𝑐1are: 

 

ℒc1
δ (F) {1,3,6} = {𝑥𝑖|𝑠𝑖𝑚𝑐1

𝛿 (𝑥𝑖) ⊂ {1,3,6}} = ∅ 

 

ℒ𝑐1
𝛿 (𝐹) {2,4,5} = {𝑥𝑖|𝑠𝑖𝑚𝑐1

𝛿 (𝑥𝑖) ⊂ {2,4,5}} = ∅ 

 

Step 4: The positive region is calculated, resulting in 𝑝𝑜𝑠𝑐1
𝛿 (𝑍) = ∅ ∪ ∅ = ∅. 

 

Step 5: The degree of dependency is obtained as: 

 

Γ𝑐1
𝛿 (𝑍)= 

0

6
 

 

Step 6: For the other attributes, the degree of dependencies are : 

 

Γ𝑐2
𝛿 (𝑍) = 

6

6
 

Γ𝑐3
𝛿 (𝑍) = 

0

6
 

Γ𝑐4
𝛿 (𝑍) = 

0

6
 

Γ𝑐5
𝛿 (𝑍) = 

2

6
 

Γ𝑐6
𝛿 (𝑍) = 

4

6
 

 

Step 7: Since the degree of dependency has reached its maximum possible value of 1, no further 

improvement can be achieved by adding other attributes. As a result, the algorithm terminates. 

The final reducts obtained as 𝑐2 and 𝑐2 as hydronamic wave and current, respectively. 

6. Conclusion  

This paper introduces an innovative tolerance-based rough neutrosophic set approach for 

attribute reduction. The approach defines lower and upper approximations using a threshold 

value 𝛿  and introduces the method for calculating the degree of dependency of decision 

attribute with respect to  subset of conditional attributes within the framework of tolerance-

based rough neutrosophic set. Furthermore, the theoretical foundations of the model are 

established though the proof of relevant theorems concerning the approximation operators. To 

validate the approach, the algorithm was applied to dataset which results indicating its 

effectiveness in identifying minimal reducts in decision systems. Moreover, by turning the 

parameter 𝛿, the model can be adapted to better tolerate noise or handle faults in real-world 

data. Our proposed algorithm is also capable of managing uncertainty, incompleteness and 

vagueness in decision system. 

The proposed approach offers significant potential for selecting the most non redundant 

features in machine learning, thereby enhancing data precision in intelligent system 

applications. For future work, we intend to extend this model into variable precision rough 

neutrosophic set model to address high levels of fault in a data by losing the membership in 

lower approximation and focus on upper approximation. Besides, we plan to explore its 

application in incomplete decision system, particularly for set-valued data to further enhance 

its robustness and adaptability in tolerance rough neutrosophic set. 
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