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ABSTRACT

Rough set has been successfully combined with other mathematical frameworks to improve
attribute reduction. In particular, attribute reduction is essential for processing and analyzing the
Rough Neutrosophic Decision System. The rough neutrosophic set provides an effective
framework for managing vagueness, inconsistency and incomplete information. This hybrid
model allows a more flexible representation of real-world data by incorporating truth,
indeterminacy and falsity membership functions. This study introduces a novel attribute
reduction technique based on tolerance relations in the context of rough neutrosophic sets,
employing rough neutrosophic numbers to express information values. The proposed method
includes the formation of lower and upper approximations and defines the degree of dependency
between decision attributes and conditional attributes. An algorithm is developed to implement
the approach and a detailed example in coastal erosion is provided to validate its practical
application. Experimental outcomes demonstrate that the method efficiently identifies relevant
and non-relevant attributes, thereby enhancing the decision-making process. The proposed
method not only improves the precision of data but also strengthens the robustness of intelligent
systems when dealing with complex and uncertain datasets.
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ABSTRAK

Set kasar telah berjaya bergabung dengan rangka kerja matematik lain untuk meningkatkan
proses pengurangan atribut. Khususnya, pengurangan atribut memainkan peranan penting
dalam pemprosesan dan analisis Sistem Maklumat Set Netrosofik Kasar.Set netrosofik kasar
menyediakan kerangka kerja yang berkesan untuk menangani kekaburan, ketidakkonsisten dan
maklumat yang tidak lengkap. Model hybrid ini membolehkan perwakilan data sebenar yang
lebih fleksibel dengan menggabungkan fungsi keahlian kebenaran, ketidaktentuan and
kepalsuan. Kajian ini memperkenalkan eknik baru bagi penggurangan atribut berdasarkan
hubungan toleransi dalam konteks set netrosofik kasar mewakili nilai matlumat. Kaedah yang
dicadangkan merangkumi pembentukan penghampir bawah dan atas serta mentakrifkan tahap
pergantungan antara atribut Keputusan dan atribut bersyarat. Satu algoritma dibagunkan untuk
melaksankan pendekatan ini dan contoh terperinci dalam isu hakisan pantai disediakan untuk
mengesahkan aplikasi praktikalnya. Hasil eksperimen menunjukkan bahawa kaedah ini secara
berkesan mengenal pastu atribut yang relevan dan tidak relevan, seterusnya meningkatkan
proses membuat keputusan. Kaedah yang dicadangkan bukan Sahaja mempertingkatkan
ketepatan data, tetapi juga mengukuhkan ketahanan system pintar dalam menghadapi set data
yang kompleks dan tidak menentu.

Kata kunci: Hubungan toleransi; pengurangan atribut; neutrosofik kasar ; hubungan kesamaan
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1. Introduction

The need for effective data analysis techniques has increased recently due to the exponential
growth of data. Attribute reduction, known as feature selection, is a crucial preprocessing step
in this context and vital for data mining and machine learning. It simplifies data by removing
irrelevant or redundant features, thus improving computational efficiency and model
performance. To solve this issue, a variety of attribute reduction methods have been suggested
and widely implemented. Su et al. (2020) proposed an efficient attribute reduction using rough
set theory. They utilized chi-square statistics and condition entropy to assess the importance of
attributes. Their approach integrates both forward and backward selection strategies to guide
the reduction process effectively. Chebrolu & Sanjeevi (2017) developed a hybrid approach
integrating the artificial bee colony algorithm that integrates discretization and attribute
reduction within rough set framework. Liang et al. (2024) later proposed the Incomplete
Knowledge Attribute Reduction (IKAR) algorithm to address the limitations of traditional
attribute reduction.

Rough set theory, first introduced by Pawlak (1982), offers a strong mathematical basis for
identifying relevant features in decision systems, particularly those using complete information.
Attribute reduction in rough sets typically involves two major techniques: indiscernibility
matrix and evaluation based on attribute significance measures. Skowron & Rauszer (1992)
defined the discernibility matrix and function as key tools in analyzing information systems.
These concepts enable the development of algorithms for tasks such as identifying rough
definability, generating reducts and cores and discovering attribute dependencies. Jensen &
Shen (2004) introduced semantics-preserving dimensionality reduction to identify the most
predictive features while retaining the meaning of the data, especially high-dimensional task
like text and web content classification. The rough set theory’s scope has been expanded to
facilitate research in intelligent systems that operate under conditions of uncertain, insufficient,
and incomplete information. Several techniques based on rough set theory have been developed
to extract decision rules from datasets structured as decision tables (information system). At the
core of Pawlak’s rough set framework lies the equivalence relation, which underpins the
formation of lower and upper approximations. Classical rough set models are well-suited for
analyzing categorical data, practical applications often involve real-valued attributes that
describe the characteristics of objects interest (Ahmad et al. 2006; Alfares & Duffuaa 2008;
Gong et al. 2008; Qian et al. 2008). To address this limitation, discretization techniques is
frequently used to convert continuous data into categorical form before applying attribute
reduction techniques. However, this transformation can lead to information loss.

Fuzzy set is well-suited for representing uncertainty and imprecise data due to its inherent
flexibility and tolerance for uncertainty (Zadeh 1965). It has been effectively applied across
various fields, including risk evaluation (Baser et al. 2023), healthcare (Gou 2021) and
forecasting (Pattanayak et al. 2021). Beyond these traditional applications, fuzzy sets have also
demonstrated value in emerging areas such as deep learning (Bonanno et al. 2017) and
topological data analysis (Vasilakakis & Iakovidis 2023). However, in practical decision-
making scenarios, relying on single membership function can be limited due to complexity of
real-world uncertainty. To address this limitation, Atanassov (1986) introduced intuitionistic
fuzzy sets as an extension of classical fuzzy sets which include true and false membership. This
framework, regarded as a subset of context-dependent fuzzy sets, effectively addresses certain
limitations inherent in conventional fuzzy set theory. Neutrosophic sets, proposed by
Smarandache (2006), generalize intuitionistic fuzzy sets by introducing a third independent
component to represent indeterminacy addressing challenges that fuzzy logic could not
adequately resolve (Zhang et al. 2010). In contrast to the two memberships of intuitionistic
fuzzy sets, neutrosophic sets defined as truth, falsity, and indeterminacy membership.
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Neutrosophic theory enhances the capacity for modelling uncertainty and has demonstrated
applicability in various domains, including optimization (Han et al. 2020), data mining (Yuan
et al. 2021), decision support systems (Yazdani et al. 2021) and medical diagnosis (Sahin &
Karabacak 2020).

Attribute reduction methods have also been adapted for fuzzy and rough fuzzy systems.
Dubois and Parade (1990) introduced a fuzzy rough set (FRS) and rough fuzzy set (RFS)
framework, enabling attribute reduction directly on numerical data. This framework has since
been the basis for developing reduction algorithms that leverage various fuzzy rough set-based
measures for handling numeric attributes without discretization. Besides, the concepts RFS and
FRS have been further developed by replacing crisp binary relation within the universe with a
fuzzy relation (Kondo 2006; Lin 1992). Su (2020) developed novel uncertainty measures and
proposed a feature selection algorithm based on fuzzy neighborhood multigranulation rough
sets. Sun (2021) proposed introduces a multilabel neighborhood rough sets-based uncertainty
measures which are maximum relevance-minimum redundancy (mRMR), and heuristic
algorithm which achieves better classification performance and select more relevant genes
across various datasets. Furthermore, several studies have extended incremental algorithms to
address challenges posed by incomplete dynamic decision tables. For instance, Giang et al.
(2021) designed hybrid incremental algorithms utilizing tolerance sets to manage missing data
within dynamic decision tables. However, the effectiveness of attribute reduction methods built
on the FRS model is often compromised when dealing with high-noise datasets or cases of low
classification accuracy, as demonstrated by Hung and Yang (2007). These shortcomings have
motivated researchers to explore more robust alternatives.

In recent studies, the intuitionistic fuzzy rough set (IFRS) model has been investigated as a
means to improve attribute reduction process. By incorporating non- membership functions,
IFRS enhances the system’s ability to manage noise, enabling better classification of uncertain
objects (Huang et al. 2014). As a result, IFRS-based reduction algorithms have shown superior
robustness and effectiveness compared to traditional FRS-based methods, particularly in noisy
or low-performance scenarios. Singh et al. (2020) defined novel mechanisms for attribute
reduction in incomplete information system within the framework of IFRS, including the
definition of intuitionistic fuzzy tolerance relation and development of lower and upper
approximations operators. They also presented a greedy algorithm and a practical example to
illustrate their approach. Nguyen et al. (2021) proposed a distance measure in the intuitionistic
fuzzy set (IFS) model and introduced IFDBAR algorithm for reduct computation in decision
tables. However, one limitation of IFS-based attribute reduction method particularly employing
filter strategies, is their relatively slow processing speed.

The rough neutrosophic set, introduced by Broumi et al. (2014) was developed to address
vagueness, uncertainty, imprecise, inconsistent and incomplete present in datasets. Given that
human decision-making often depends on expert judgement which can be unreliable. This set
offers to capture and process imperfect knowledge. Despite its potential, the integration of
rough set with neutrosophic set theory has seen limited exploration in the field of attribute
reduction. (Tiwari et al. 2018) claimed that novel approach of attribute reduction employs a
tolerance-based intuitionistic fuzzy rough set approach. In their work, they defined lower and
upper approximations based on tolerance relations and calculated the degree of dependency of
decision attributes on the set of conditional attributes. Their algorithm was applied to a sample
data set and compared the results with tolerance-based fuzzy rough set method. Ab Ghani et al.
(2022) proposed approximation constructs for rough neutrosophic set using tolerance relations.
Their research emphasized type-1 of two granulation and multi-granulation models such as T1-
TGRNS and TI-MGRNS and explored their properties in terms of lower and upper
approximations. Wang ef al. (2023) proposed a multi-scale single-valued neutrosophic system
utilizing a dominance relation, which leverages relative distance preference degrees. They
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detailed the procedures for computing test and decision costs using a rough set-based risk cost
formula and identified optimal scale combinations that minimize total system cost.

This paper introduces a new method that combines tolerance-based relations with the rough
neutrosophic set for attribute reduction. First, it introduces novel formulations for lower and
upper approximations by replacing the traditional indiscernibility relation with a tolerance
relation on similarity between two objects. Secondly, an algorithm is proposed to identify the
reduct set within a rough neutrosophic decision system. The proposed method effectively
addresses vagueness, uncertainty and incompleteness by integrating the rough set model with
the neutrosophic set model. In addition, the proposed algorithm evaluates the degree of
dependency between condition and decision attributes to derive a minimal reduct. An
illustrative example is provided using coastal erosion data to demonstrate the method
practically and improved performance.

2. Rough Neutrosophic Sets

In order to build the theoretical foundation required for the development of tolerance-based
rough neutrosophic framework. This section reviews basic definitions of neutrosophic sets,
such as single-valued neutrosophic relations and rough neutrosophic sets.

Definition 2.1. (Smarandache 2006) Let X be a universal set. A neutrosophic set VV defined on
X is expressed as:

V= {(X, Tv(X),IV(X),Fv(X)):X € X} (1)

The function Ty, Iy, F, are real-valued mappings from X to the extended intervals ]-0: 1],
representing the degrees of truth, indeterminacy, and falsity respectively. There are no
constraints on the sum of these values from any element x € X.

Neutrosophic set offer a flexible and comprehensive structure for capturing data
characterized by inconsistency, imprecision and incomplete information. The truth and falsity
components relate to how strongly an element belongs or does not belong to the set, whereas
the indeterminacy degree quantifies uncertainty independently of the other two. All the degrees
fall within the standard interval [0,1].

Definition 2.2. (Yang et al. 2016) A single valued neutrosophic relation (SVNS) R on the
Cartesian product U X U defined as:

R = {(x,¥),nr(x,¥), Br(x, ¥), vz (x, )| (x, ) € U X U} 2

The functions 7, Bg, and vz map from U X U to the interval [0,1] representing the truth
membership, indeterminacy membership and falsity-membership degrees respectively, for each
pair of (x,y) in the universe U.

Definition 2.3. A rough neutrosophic binary relation between objects x;, x; € U, denoted by
(nV(xl-,xj),ﬁv(xl-,xj),vv(xi, xj)) x;,x; € U is classified as a rough neutrosophic tolerance
relation if it satisfies the properties of reflexive and symmetric.

Definition 2.4. (Ab Ghani et al. 2022) Let S = (U, A) represent a rough neutrosophic
information system and let F be neutrosophic set defined over the universe U, where a € A.
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The lower and upper approximation of F S U with respect to a covering based on tolerance
relation are defined as follows:

L(F):= U{[x]foz(a)ix € U, [X]toi(@ € FAY € [X]toi(w))
= {< X € U, 120 (), Begry (), Vi) (1) >1Vy € U, (x,) € tol(a) 3)
U= | oo x € U, (61 N F # 8
= {<x € U, N (), Bur (%), vy (x) >:3y € U,(x,y) € tol(a) 4)
Definition 2.5. (Broumi et al. 2014) Let U be a non-empty set and let @ denote a tolerance
relation defined on U. Suppose V is a neutrosophic set on U characterized by three membership

functions which are 7,, is the truth-membership function, £3,, is the indeterminacy-membership
function, and v,, is the falsity-membership function. The lower and upper approximations of V

under the approximation (U,Q) denoted by N(V) and N(V) respectively, are defined as follows:

N(V) = {(X: Uﬁ(v)(x)'.Bﬁ(v)(x):vﬁ(v)(x))ly € [x]g,x € U} ()

NV = {(x, 1y ) (), By ), vvey )|y € [x]g, x € U} (6)

where
Tﬁ(v) (x) =Vy€[x]Q TV(}’);IN(V) (x) =/\ye[x]Q IV(}’);FN(V) (x) = /\ye[x]Q F,(y),
Ty () =Ayelxiy Tv D, Inay (%) =Vyepxg, Iv ), Fyany (%) = Vyepx, Fv (¥)

The symbol V and A denote the maximum and minimum operators across the tolerance class
[x]q. The functions Ty, (), Iy (¥), and Fy, (y) represent the truth-membership, indeterminacy-

membership, and falsity-membership of element y in the neutrosophic set V. These degrees are
bounded within the interval [0,1], ensuring the following conditions hold:

and

The lower and upper rough neutrosophic approximation operators are denoted as N(V) and

N(V). The pair of N(V),N(V) defines the rough neutrosophic set in (U, Q). Further logical
properties and structural characteristics of such sets have been explored by Zainal ez al. (2021).

Definition 2.6. A rough neutrosophic information system (RNIS) is formally defined as a

quadruple S = (U,C U D,V, f), where U is called universe consisting of a non-empty and finite
set of objects, C represents a finite conditional attribute, D = {d} is a single set containing the
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decision attribute d, with the condition that C N D = @, V denotes the set of all rough
neutrosophic values, composed of V =V, UV,, where V/; and V, are the value domains
corresponding to the condition and decision attribute, respectively. The information function f
is a map from U X (C U D) onto V, such that f(x,c) and f(x,d) are rough neutrosophic
values, represented as f(x,c) = (n.(x), B:(x),v.(x)) and f(x,d) = (ng(x), Ba(x),va(x)).
Thus, f(x,c) refers to the rough neutrosophic value of object x under the condition attribute
¢, while f(x, d) represent rough represents rough neutrosophic of x under decision attribute
d.

Example 1 A rough neutrosophic decision system is illustrated in Table 1, where the universe
is given by U = {x;, x5, ..., x¢} and the set of conditional attributes is C = {c;, ¢5, c3, ¢4, c5}. Each
object is described by rough neutrosophic values for the conditional attributes, and a
corresponding decision class denoted by d.

Table 1: Rough neutrosophic decision system

U [ Cy C3 Cy Cs d
X1 (0.2,0.4,0.2) (0.1,0.7,0.3) (0.2,0.6,0.1) (0.4,0.6,0.2) (0.2,0.8,0.2) 1
X3 (0.1,0.7,0.3) (0.1,0.8,0.3) (0.3,0.6,0.1) (0.5,0.2,0.3) (0.2,0.7,0.2) 2
X3 (0.1,0.8,0.3) (0.1,0.8,0.3) (0.2,0.8,0.2) (0.5,0.4,0.2) (0.4,0.6,0.2) 1
Xy (0.1,0.9,0.1) (0.6,0.3,0.3) (0.2,0.7,0.2) (0.2,0.8,0.2) (0.4,0.6,0.2) 1
Xg (0.4,0.6,0.3) (0.2,0.6,0.1) (0.2,0.8,0.2) (0.2,0.8,0.2) (0.2,0.8,0.2) 2
Xg (0.4,0.6,0.2) (0.2,0.6,0.1) (0.2,0.8,0.2) (0.2,0.4,0.3) (0.2,0.8,0.2) 1

In practical applications, decision systems often consist of high-dimensional data, which can
pose challenges for analysis and computation. To address this, the following sections introduce
rough neutrosophic techniques for dimensionality reduction by employing feature selection
techniques aimed at identifying the most informative attributes.

3. Tolerance-Based Rough Neutrosophic Set Approach for Attribute Reduction

In this section, we define the similarity between pairs of objects based on attributes or subsets
of attributes. To enhance classification accuracy, we introduce a tolerance relation within the
rough neutrosophic set (RNS) framework, incorporating threshold values applied to
membership, indeterminacy, and non-membership values.

Rough neutrosophic decision system (RNDS) relies on equivalence relations to partition of
U, which can limit the effectiveness of knowledge discovery. To address this constraint, we
propose a similarity degree that captures the similarity degree of rough neutrosophic values.
Inspired by the similarity model proposed by Feng and Li (2013), this work generalizes the
concept to the tolerance-based rough neutrosophic environment, as detailed in the following.

Definition 3.1. Assume RNDS = (U,CUD,V,f), for any x;,x; € U, ¢, € C, the two rough

neutrosophic values f(xiscr) = (e, (1), B, (x), v, (x;)) and f (xj, ck) =
(e, (xj), Be, (xj), Vey (xj)), the similarity degree between x; and x; with respect to attribute ¢y
is defined using a weighted Euclidean distance as follows:

simck(xi,xj) =1-

0 (10,6 =10, () + 0 (B (50 = B () + 7 (v o) = 2, ()’

(7
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where a,w,y are weighting factors and 7., (x;), B (x;) and v, (x;) are membership,
indeterminacy, and non-membership of an object x;.

Remark 3.1. The parameter values in RNDS are computed to represent object characteristics
are determined based on user requirements, subject to the following constraints:

. n=zv>p

2. 0<snv,p<1

3. n+f+v=
Property 3.1

Let RNDS = (U,C U D,V, f) for any x;,x; € U, a € C, the following condition holds:
1. 0<simg(x;,x) <1
2. sima(xi, xj) = sima(xj, xi)
3. f(xja)= f(xj, a) S sima(xl-,xj) =1
4. Consider f(x;,a)=(1,0), f(xj,a) =(0,1) and let « = w = 0.5, Under these
conditions, the similarity measure is sima(xl-,xj) = 0 indicating thatx;and x; are
completely dissimilar in term of a.

Definition 3.2 Let RNDS = (U,C U D,V, f) be a rough neutrosophic decision system and let
A C C be a subset of conditional attributes. For threshold § € [0,1], a §- similarity relation 7%
in the RNDS is defined as:

T9(A) = {(x;,x;) € U X U:simy(x;,x;) = 8, for all a € A}

This relation 79 is reflexive and symmetric, but not transitive.

To evaluate the similarity relation between two objects with respectto a M € C, the relation
is extended as follows:

(x;,x;) € simgy if and only if [Trep simy (x;, %) = 8 (8)

& is similarity threshold where § € [0,1]. It determines the required degree of similarity for
inclusion under the tolerance relation.

Definition 3.3 Given the similarity relation simg;, the tolerance relation class of an object x; €
U is defined as:

sim,‘\s,, = {xj € U|(xl-,xj) S sim,‘\s,,} 9

This class includes all objects x; that are sufficiently similar to x; under the specified attribute
subset M and threshold §.

Definition 3.4 Given a knowledge representation system RNDS = (U,C UD,V,f), and let
X € U be lower and upper approximation respectively are
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L (F) = {x;: SIM§ (x)) € X}
= {(x € U,nne) (0, Bu vy (), vy (0)): ¥ € U, (x, y) € tol(a)}, (10)

UG (F) = {x;: SIMP (x)NX # p}
={(xev, Lo (), Vi) (), wxy (D)) y € U, (x,y) € tol(a)}. (11)

The pair (L,‘\s,, (F), u$, (F )) is referred to as a rough neutrosophic toleration set. These

approximations follow the same conceptual foundation as in the classical RNS. Let Z be a set
of attributes generating the tolerance relation over U.

Definition 3.5 Assume RNDS = (U,C U D,V, f). The Z-positive region with respect to M,
denoted by

posy (Z) = Uxeu,z Ly (F) (12)
where Z € C and Z = {d}.
Definition 3.6 The dependency degree Z to Mis determined by the ratio of posgy(Z) to |U|:

n(@)
52 = —""’TZl | (13)

The role of T (Z), serves as key indicator of how well the attribute set M, which is as
important as attributes M in approximating decision Z. During the attribute reduction process,
attributes are added incrementally to the current subset, and at each step, the change of degree
of dependency is evaluated. If including an additional attribute does not increase the
dependency degree, the process is terminated, and the resulting subset is identified as the reduct.
The formulation extends Pawlak’s dependency model from classical rough sets to RNS; thereby
generalizing it to support more complex, uncertain environments over arbitrary universe.

Theorem 3.1. Let (U, C U D, Vgys RNS) be RNDS. Let Z < C and X S U, then L (F) € X <
Upy (F).

Proof.

Considering that y € sim$,(y). Hence, y € X producing L;(F) € X. Assume y € X. From
the point y € sim$ (y) — |sim1‘\g,,(y)ﬂX +p—ye US(F) =X —>US(F), LS(F) <
X € UL (F) is produced. O

Theorem 3.2. Assume (U, C U D, Vgys RNS) be an RNDS. Let My € M, € C and X € U, then
1Ly (F) <Ly (F)
2. U, (F) s up, (F)

Proof.

1. Assume y € L,‘f,,l (F) then, sim,‘\s,,l(y) cX, So M{c M, — sim,‘\sl2 y)
Sim,‘?,,1 (y). Hence, sim,‘@2 ypeXx—oye L,‘\s,,z (F). Therefore, L,‘\s,,l (F) c L,‘f,,z (F).
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2. Assume y € ’U,‘\Zz (F), then sim,‘?,,2 NX+¢, So M\ S M, — siml“f,,2 y) c
siml‘\s,,1 (y) Hence, siml‘\s,,1 NX+¢p —>yE€ ‘U,‘\S,,1 (F). Therefore, U,‘f,,z (F) <
Ug, (F). o

Theorem 3.3 Assume (U,C U D,Vgys RNS) be an RNDS. Let M S C,8, < &, and X S U,
then

1. Lyt (F) € LyZ(F)

2. USH(F) € UL (F)

Proof.
1. Assume Lf,,l (F), then simf,,1 ycX.Ifze sim,‘\s,,2 (y), then (y,z) € simff (y) &
[aem simg (v,2) = 6, © [laem simq (v,2) 2 616, 2 6, © (v,2) €
simfj (y)eze sim,'\sl1 (y) - simf,,2 (y) sim,‘\s,,1 (y) - simff CX—oyE
L32(F). Therefore, L3 (F) € L3?(F)
2. Assume ’Uff (F), then sim,'\sl2 WnX =+ qb.sim,‘\s,,2 (y) simf,; (y) » simj\s,,1 y)n
X # ¢ - y € USH(F). Therefore, U2 (F) € USH(F). O

4. Algorithm for Tolerance-Based Rough Neutrosophic Reduction

This section presents an attribute reduction algorithm designed to identify a reduct based on
tolerance relation and considering the degree of dependency denoted by I'5(Z). The algorithm
begins with a null set and sequentially incorporated attributes, seeking the maximum increase
in dependency on the decision attribute. This process produces the highest values for the dataset,
with a value of 1 in the case of consistent system. This algorithm eliminates exhaustive
evaluation of all potential subsets of conditional attributes owing to the minimal reduct property
of the decision system. The proposed reduct algorithm proceeds as follows:

Step 1: Construct the original information system into RNS decision table as illustrated in
Example 1.

Step 2: Calculate the rough neutrosophic tolerance relation between each pair of objects based
conditional attributes as defined in Definition 3.1.

Step 3: Determine the lower and upper approximation of set using RNS tolerance classes
corresponding to identical decision classes, as defined in Definition 3.2.

Step 4: Compute the positive region and degree of dependency of d for each conditional
attribute.

Step S: Select the attribute that yields the highest condition attribute for degree of dependency;
this attribute is designated as the first reduct.

Step 6: Add other attributes to obtain a new reduct set and calculate the degree of dependency
of conditional attributes.
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Step 7: Repeat Step 5 and 6. If the inclusion of futher attributes does not lead to an increase in
the degree of dependency compared to the previous iteration. The process is halted and the
current set is declared the final reduct.

5. Illustrative Example

The key factors contributing to coastal erosion are adapted from the study by (Luo et al. 2013).
Based on their findings, six significant attributes or condition of coastal erosion are storm surge
(c1), hydrodynamic wave and current (c, ), imbalance sediment supply(cs), sea level rise(c,)
and sand mining activities (cs).

Table 2 outlines the coastal erosion decision system where the universe is defined as U =
{x1,%x5,x3,%4,X5,%¢} and the corresponding conditional attribute set is given by C =

{ci,¢9, 0, C6 ).

Table 2: Coastal erosion decision system

U C1

C2

C3

Cy

Cs

Co

X1
X2
X3
X4
Xs5

X6

(0.32,0.48,0.20)
(0.48,0.32,0.20)
(0.64,0.16,0.30)
(0.80,0.00,0.10)
(0.16,0.64,0.30)
(0.48,0.32,0.20)

(0.32,0.48,0.20)
(0.80,0.00,0.10)
(0.32,0.48,0.20)
(0.64,0.16,0.30)
(0.80,0.00,0.10)
(0.48,0.32,0.20)

(0.80,0.00,0.10)
(0.48,0.32,0.20)
(0.32,0.48,0.20)
(0.16,0.64,0.30)
(0.64,0.16,0.30)
(0.64,0.16,0.30)

(0.64,0.16,0.30)
(0.64,0.16,0.30)
(0.48,0.32,0.20)
(0.80,0.00,0.10)
(0.32,0.48,0.20)
(0.16,0.64,0.30)

(0.32,0.48,0.20)
(0.16,0.64,0.30)
(0.80,0.00,0.10)
(0.48,0.32,0.20)
(0.32,0.48,0.20)
(0.64,0.16,0.30)

(0.16,0.64,0.30)
(0.16,0.64,0.30)
(0.80,0.00,0.10)
(0.32,0.48,0.20)
(0.48,0.32,0.20)
(0.64,0.16,0.30)

m, O © r O |

Step 1: Begin by constructing the coastal erosion decision system, as illustrated in Table 2.

Step 2: Calculate the rough neutrosophic tolerance relation between two objects concerning
conditional attributes. Utilize a tolerance based RNS for attribute selection. The transformed
decision system is obtained using indeterminacy as 0.2 (refer to Table 2). The decision classes
of decision systems are defined as follows:

U/Z:{{xlr X3, x6}' {xZ' X4, X5}}.

Based on the weighting factors @ = 0.4, w = 0.2,y = 0.4, and § = 0.8, the tolerance class for
attribute set c¢; is measured using the similarity measure:

U/sim§1= {{x1: X2, X6}, {21, X5}, {22, x3, %6}, {x3, x4}},
Similarly, several tolerance classes for other attributes are expressed as

U/simfzz {{xp x3, X6} {X2, X4, xS}}

U/simfsz {{xl, X5, X6}, 1X2, X3}, {X2, X5, X6}, {X3, x4}}

U/sim§4= {{x1: X2, X3}, {x1, X2, X4}, {x3, x5}, {x5, xe}}

U/sim§5:{{x1, X2}, {1, X4, %5}, {23, X6}, {x4, xe}}

U/Simgéz{{xp X2, X4}, {23, x5}, {24, x5 Hoxs, xe}}
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Step 3: The lower approximation of decision classes for attribute set c;are:
L2 (F) {1,3,6} = {x;|sim@ (x;) € {1,3,6}} = 0
£ (F) {2,455} = {x;|sim& (x;)) c {2,45}} = 0
Step 4: The positive region is calculated, resulting in posf1 2)y=pup=0.
Step 5: The degree of dependency is obtained as:
o @)=¢

Step 6: For the other attributes, the degree of dependencies are :

6
g (2) =3

0
re2) =+
S 0
Fc4(Z) %
S 2
Fc5(Z) %

4
o2 ==

Step 7: Since the degree of dependency has reached its maximum possible value of 1, no further
improvement can be achieved by adding other attributes. As a result, the algorithm terminates.
The final reducts obtained as ¢, and ¢, as hydronamic wave and current, respectively.

6. Conclusion

This paper introduces an innovative tolerance-based rough neutrosophic set approach for
attribute reduction. The approach defines lower and upper approximations using a threshold
value § and introduces the method for calculating the degree of dependency of decision
attribute with respect to subset of conditional attributes within the framework of tolerance-
based rough neutrosophic set. Furthermore, the theoretical foundations of the model are
established though the proof of relevant theorems concerning the approximation operators. To
validate the approach, the algorithm was applied to dataset which results indicating its
effectiveness in identifying minimal reducts in decision systems. Moreover, by turning the
parameter &, the model can be adapted to better tolerate noise or handle faults in real-world
data. Our proposed algorithm is also capable of managing uncertainty, incompleteness and
vagueness in decision system.

The proposed approach offers significant potential for selecting the most non redundant
features in machine learning, thereby enhancing data precision in intelligent system
applications. For future work, we intend to extend this model into variable precision rough
neutrosophic set model to address high levels of fault in a data by losing the membership in
lower approximation and focus on upper approximation. Besides, we plan to explore its
application in incomplete decision system, particularly for set-valued data to further enhance
its robustness and adaptability in tolerance rough neutrosophic set.
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